
Universität Paderborn

Fakultät EIM

Institut für Elektrotechnik und Informationstechnik

MultiFlow – Optical Flow Estimation Using

Deep Neural Networks

Master’s Thesis
for the Master’s Program in Computer Science

submitted by

Anshul Suresh Bansal

supervised by

Dr.-Ing. Mahmoud Mohamed

Dipl.-Ing. Markus Hennig

submitted to

Prof. Dr. Eyke Hüllermeier

Prof. Dr.-Ing. Bärbel Mertsching

Paderborn, December 19, 2020

Abstract

Motion detection and activity recognition are some of the most prominent tasks in the domain

of computer vision. With large scale developments in autonomous driving and robotics,

solving these tasks efficiently with accurate results becomes even more critical. Taking

inspiration from these challenges, a new architecture called MultiFlow is proposed in this

thesis to obtain robust optical flow in terms of accuracy and smoothness. This model is based

on the works of FlowNetC [DFI+15], and it estimates optical flow by taking consecutive

multiple image frames (image triplets) as inputs and computing the correlation between

these image frames. The MultiFlow model is evaluated against the state-of-the-art neural

network models that estimate the optical flow using multiple image frames and the original

FlowNetC model. However, the MultiFlow model is a scene-specific model rather than a

generalized model. Nonetheless, results show that the MultiFlow model outperforms several

models and hugely improves on the best performing FlowNetC model by a margin of over

36 % on the MPI Sintel dataset [BWSB12].

Acknowledgements

I want to thank Clement Pinard, the author of FlowNetPytorch [Pin17], for answering the

queries related to the implementation of the loss function and the architectural details of the

model.

I want to thank Junhwa et al. the author of UnFlow [MHR18] for giving their time and

answering the questions related to weight distribution provided to the loss function and also

providing suggestions for training the neural network.

I want to thank Sam Pepose, author of FlowNet2 [Pep17], for providing his repository on

GitHub from where code for flow visualization is taken as a reference.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of Optical Flow . 2
1.3 Objectives of this Thesis . 4
1.4 Structure of this Thesis . 5

2 Fundamentals 7
2.1 Optical Flow . 7
2.2 Optical Flow Visualization . 8
2.3 Average End-Point-Error (AEPE) . 9
2.4 Convolutional Neural Networks . 10
2.5 Convolution Layers . 12
2.6 Transposed Convolution Layers . 14
2.7 Autoencoder - An Encoder Decoder Architecture 16
2.8 Dataset . 17

2.8.1 MPI Sintel Dataset . 18

3 Related Work 23
3.1 Image Frame Pairs Approaches . 23
3.2 Multiple Image Frames Approaches . 24
3.3 Why MultiFlow? . 26

4 Development & Implementation 29
4.1 Original FlowNetC Architecture . 29

4.1.1 Contractive Network of FlowNetC . 29
4.1.2 Correlation Layer . 30
4.1.3 Refinement Network of FlowNetC . 34

4.2 Implementation of MultiFlow . 35
4.2.1 Contractive Network of MultiFlow 36
4.2.2 Refinement Network of MultiFlow . 40

4.3 Training Procedures . 43
4.3.1 Hardware and Software Resources . 43
4.3.2 Multi-Scale Loss Function . 43
4.3.3 Hyperparameter Optimization - Variable Learning Rate 45
4.3.4 Training Challenges and Roadblocks 46

5 MultiFlow Test Results 55
5.1 Final Training Procedure . 55

5.2 Results . 56

6 Discussion 65

7 Conclusion & Future Work 69
7.1 Conclusion . 69
7.2 Future Work . 70

Bibliography 71

Appendix 75

Declaration 83

1 Introduction

1.1 Motivation

Optical flow estimation is one of the core tasks in the computer vision domain. Optical

flow estimation using multiple image frames is currently a research area that is explored

extensively. Two factors motivate the task of optical flow estimation:

• The first motivating factor in estimating optical flow comes from its applications in

diversified fields such as visual odometry, autonomous driving, and semantic segmen-

tation of images. With the help of optical flow, autonomous driving cars can predict

and analyze the position of objects in their surroundings (e.g., pedestrians), thereby

helping the cars to understand motion of several objects. This would help to make the

autonomous driving car more safe for its passengers and for the people outside of the

car.

In semantic segmentation of images, optical flow helps in identifying the moving and

stationary regions in the image. Figure 1.1 shows a semantic segmentation of an image

frame using optical flow. In the right side of the figure the blue region indicates the

background water and pink region indicates the moving object (bird). Such segmen-

tation of image can help to identify and analyze movement patterns of the non-rigid

objects. With revolutionary technologies coming up in robotics, optical flow finds its

application in several tasks in robotics. Notable tasks include motion detection and

action detection, which a robot senses in its surroundings with a camera and light

sensors. Optical flow can also be used in Simultaneous Localization And Mapping

(SLAM), where accurate optical flow helps the robot to obtain accurate SLAM.

• The second motivating factor for computing optical flow is the development and ad-

vancement done in the field of Convolutional Neural Networks (CNNs) and their appli-

cability in several computer vision tasks such as image classification, image segmenta-

tion and optical flow flow estimation. CNN does not require hand-engineered features

2 1 Introduction

Figure 1.1: Semantic Segmentation of Image Frame using Optical Flow from [SSJB16]

since CNN consists of convolution layers which automatically extract the features from

the images. Results provided by the work of authors in [DFI+15] and [SYLK18] show

that estimating optical flow using CNNs has proven to be successful and accurate.

Hence, CNNs are a powerful tool for optical flow estimation.

1.2 Overview of Optical Flow

The perceivable motion between two consecutive image frames in 2D is termed as optical

flow. An optical flow field is described using a 2D vector field. The process of estimating

this 2D vector field is known as optical flow estimation. To perform the task of optical flow

estimation, various approaches are developed for pixel-level motion analysis over the years.

These approaches are divided into two categories: variational and machine learning-based

techniques.

• The first approach used for optical flow estimation falls under the category of varia-

tional techniques. The Horn-Schunck method described in [HS81] laid the foundation

of optical flow estimation by treating it as an energy minimization problem. The

method given by Horn-Schunck is a variational based global method that formulates

the change in pixel intensity in temporal images and regularizes neighboring pixels to

have a spatially smooth flow for the entire image frame at once. The Horn-Schunck

formulation is based on two assumptions: brightness constancy and smoothness con-

stancy. These assumptions are essential in solving the underlying problem of drastic

change in pixel intensity and aperture problem in optical flow estimation. On the

contrary, Lucas-Kanade in [LK81] addressed the problem of optical flow estimation

differently. Instead of a global method, Lucas-Kanade uses a patch based technique

for computing the optical flow. Instead of dealing with the entire image frame at

1.2 Overview of Optical Flow 3

once, a small patch in the local neighborhood of the pixel is considered. The displace-

ment vector is calculated for a pixel and its local neighborhood in an iterative scheme.

To improve on the above methods for better estimation of optical flow, descriptor

matching techniques such as Histogram of Gradients (HOG) introduced in [DT05] and

Scale-Invariant Feature Transform (SIFT) introduced in [Low04] can be used for fea-

ture extractions. Weinzaepfel et al. proposed a model named DeepFlow in [WRHS13],

which makes use of the so-called DeepMatching algorithm for the estimation of op-

tical flow. The DeepMatching algorithm helps the DeepFlow model compute dense

correspondence matching between the pixels of consecutive image frames. While the

advantage of variational techniques is that they do not require any dataset for train-

ing the optical flow estimation algorithm, the disadvantage is that the estimated flow

obtained by these methods may not be robust and completely accurate, since these

methods perform poorly in case of large motion and are sensitive to noise.

• The second approach to estimate optical flow uses machine learning, particularly deep

learning. Deep learning involves creating neural networks with deep structure (hidden

layers ≥ 2). Hidden layers are layers between input and output of the neural network.

Since these neural networks are required to be trained, the training methodologies are

categorized into supervised and unsupervised learning techniques. Supervised learning

techniques requires labeled data (dataset with ground-truth optical flow), and unsu-

pervised learning techniques do not require labeled data. Deep learning requires a large

dataset for model training, but the advantage is that the resultant optical flow field is

robust and very accurate. Furthermore in deep learning, CNNs are used to solve the

task of optical flow estimation. In [PC15], the authors show that CNNs are good at

pixel level operations. CNNs learn from the features that are extracted from the image

frames. Since optical flow estimation also operates on pixel-level granularity, CNNs

are an excellent match in serving as a tool for this task.

Typically, to compute an optical flow field, consecutive image frame pairs are needed so that

the apparent motion between them can be computed. These image frame pairs can be a

sequence of image frames captured from a video sequence like the MPI Sintel [BWSB12]

dataset or random image pairs like the Flying Chairs [DFI+15] dataset where the image

frames are not ordered in a sequence and have planar motion of objects in the image frames.

The pair of consecutive image frames are passed to an optical flow estimation model, and the

model predicts the optical flow field for the corresponding image frame pair. Figure 1.2 shows

consecutive image frames from the MPI Sintel dataset in the bottom section, along with the

ground-truth optical flow field in the top section. The arrows inside the ground-truth optical

4 1 Introduction

flow indicate the direction of movement of pixels between the two image frames.

Figure 1.2: Example of Optical Flow [DFI+15]. Refer Section 2.2 for Color Coding Scheme

Till now, the authors in [DFI+15] and [SYLK18] have estimated the optical flow field only

using image pairs, i.e., two consecutive image frames per optical flow field. However, only a

few works estimate the optical flow field using multiple consecutive image frames like image

triplets. For example, the work of authors described in [RGS+19] is based on image frame

triplets.

The intuition behind using multiple image frames is that an additional image frame will

provide more motion information that can be leveraged to obtain better flow estimates. It

is expected that having multiple image frames can help in better learning of displacement of

the vector field of pixels as described in [RGS+19] and [MB18]. The inclusion of an additional

image frame encourages better performance in correspondence learning and correspondence

matching between the pixels of the image frames. Hence, in this thesis, the original FlowNetC

architecture presented in [DFI+15] is adapted and modified to form the MultiFlow model

which uses consecutive image frame triplets, i.e., three consecutive image frames per optical

flow field, to estimate accurate, robust, and smooth optical flow fields. Additionally, the

MultiFlow model estimates the optical flow field by executing the neural network only once.

1.3 Objectives of this Thesis

The main objective of this thesis is to estimate optical flow accurately and robustly using

multiple image frames rather than the standard consecutive image pairs approach. While

1.4 Structure of this Thesis 5

estimating the optical flow field, the goal is to obtain smooth flow field vectors. For developing

the CNN model, various machine learning frameworks are investigated. Since the CNN model

needs to be trained on optical flow dataset(s) to learn to estimate optical flow, another

objective is to investigate various datasets available for optical flow computation and select

the appropriate dataset that satisfies the constraint of consecutive multiple image frames.

After estimating the optical flow field, the objective is to compare the performance of the

proposed neural network model against the state-of-the-art optical flow estimation models

using an evaluation metric. Finally, the final objective of this thesis is to analyze the proposed

model and see in which areas the neural network model can potentially be improved.

1.4 Structure of this Thesis

This thesis is further organized as follows: Chapter 2 introduces the fundamental concepts

used in this thesis. A mathematical formulation of optical flow and various other concepts re-

lated to optical flow is presented. The chapter also discusses the core concepts used in CNNs.

Additionally, a detailed description of the dataset used in this thesis is also given. Chapter 3

discusses related works that are relevant for this thesis and are used for performance evalua-

tion. In Chapter 4, the original FlowNetC model is explained along with modifications made

to the model to implement the MultiFlow model. The chapter also explains the training

procedures used to train the MultiFlow model. Furthermore, in Chapter 5, results obtained

by the MultiFlow model are presented, and Chapter 6 discusses the challenges faced during

the training of the MultiFlow model. Finally, Chapter 7 presents the conclusion and future

areas of research.

6 1 Introduction

2 Fundamentals

This chapter explains the fundamental concepts used in this thesis. It starts with formulating

optical flow with the brightness constancy assumption. Then a color wheel approach is

described, which is used to visualize the optical flow field. Afterwards, the performance

metric known as average end-point-error is defined. The color wheel and performance metric

are used while evaluating the results in Chapter 5. This chapter also introduces core concepts

in deep learning such as Convolutional Neural Networks (CNNs), the layers used to build a

CNN, and a particular type of CNN based architecture named autoencoders.

2.1 Optical Flow

The task of optical flow estimation involves pixel-level motion prediction. Motion of several

objects between two consecutive image frames that arise due to relative motion between the

camera and the objects, is termed as optical flow. Figure 2.1 illustrates the idea of optical

flow:

Figure 2.1: Optical Flow Estimation

In Figure 2.1, the two image frames can be expressed as a function of x, y, and t, where x

and y denotes the location of a pixel at (x,y) and t denotes time. In image frame F1 at time

8 2 Fundamentals

t, the pixel is at location (x,y). After a certain amount of time ∆t has passed, the pixel in

image frame F2 is at location (x+ u∆t,y + v∆t) at time t+∆t with velocity vectors u and

v. While estimating the displacement vectors (u,v), the brightness constancy assumption is

maintained meaning the intensity value of the pixel itself does not change.

The brightness constancy assumption in mathematical terms is stated as:

I (x, y, t) = I (x+ u∆t, y + v∆t, t+∆t) (2.1)

In simple words, if a pixel with RGB values (0,0,0) is at location (5,10) at time t=10 seconds

in image frame F1, when the pixel will be at location (10,5) at time t=11 seconds in image

frame F2, it will have the same RGB values (0,0,0). The resultant displacement of the pixel

is (5,-5).

2.2 Optical Flow Visualization

The values of the optical flow field are vectors that denote the directionality of the movement

of pixels. In simple words, these values will indicate where to find the pixel in the next

image frame. To understand the displacement of the pixels between the image frames, the

technique of visualization is used. A color-coding scheme is used to understand the flow of

motion between the consecutive image frames and to visualize the optical flow field. The

color-coding scheme used in this thesis is the color wheel. The location of color in the wheel

depicts the direction of the displacement of pixels between the consecutive image frames.

Figure 2.2 illustrates the color wheel.

Figure 2.2: Color Wheel for Optical Flow Visualization [Git19]

2.3 Average End-Point-Error (AEPE) 9

In Figure 2.2, red color denotes that pixels have a displacement in the forward direction

and yellow color denotes the displacement of pixels in the downward direction. A similar

interpretation can be made for all other directions and their respective colors. The darker

the color is (saturation), more is the displacement of that particular pixel.

2.3 Average End-Point-Error (AEPE)

The performance metric used to evaluate the MultiFlow model is called as the Average

End-Point-Error (AEPE). This is a standard metric used to evaluate the performance of all

optical flow models. AEPE metric calculates the euclidean distance between the predicted

and the ground-truth optical flow. Large euclidean distance values denote that the predicted

displacement of the pixel values are inaccurate, thereby yielding inaccurate optical flow fields.

The loss function used to train the model also incorporates the AEPE function to compute

the loss. Larger values of AEPE contributes to higher losses while training the model. The

aim is to minimize the AEPE as much as possible, thereby estimating a robust and accurate

optical flow field. Figure 2.3 gives a diagrammatic representation of EPE.

Figure 2.3: Diagrammatic Representation of EPE. Based on the figure given by the author
in [Git19].

In mathematical terms, EPE is described as follows:

10 2 Fundamentals

EPE =

(

1

|AB|

∑

a,b∈A,B

√

(a− ã)2 + (b− b̃)2

)

(2.2)

In Equation 2.2, a and b denotes the (x,y) location of the pixels in ground-truth optical flow

and ã, b̃ denotes the (x,y) location of the pixels in predicted optical flow. A and B denotes

the total number of pixels over which EPE is calculated.

When computing EPE over N number of optical flow fields, AEPE is described as:

AEPE =
1

N

(

1

|AB|

∑

a,b∈A,B

√

(a− ã)2 + (b− b̃)2

)

(2.3)

1 def a_epe(labels, predictions):

2 squared_difference = tf.square(tf.subtract(predictions, labels))

3 loss = tf.reduce_mean(squared_difference)

4 loss = tf.sqrt(loss)

5 loss = loss/len(df) #Number of image frames

6 return loss

The code snippet above illustrates the implementation of average end-point-error in this

thesis. This average end-point-error function is used in the multi-scale loss function of the

MultiFlow model discussed in Section 4.3.2.

2.4 Convolutional Neural Networks

Convolutional Neural Networks are algorithms in the deep learning paradigm. CNNs have

applications in various computer vision tasks such as image/object classification and image

segmentation. The basic building blocks of convolutional neural networks are convolutional

layers (refer to Section 2.5). The development of these networks is inspired by the working

of neurons in a human brain. Since a CNN is made up of several convolution layers, each

layer is responsible for identifying a particular visual receptive field pattern. For example,

if a three-layer CNN is used for image classification, the first convolution layer can find the

structure patterns. The second layer can find edge patterns. The third layer can find color

patterns. Due to its applicability in various computer vision tasks, CNN has become a potent

tool for solving complex computer vision tasks.

2.4 Convolutional Neural Networks 11

The general working principle of a convolution neural network is as follows:

A convolutional neural network is built up of an input layer, multiple hidden layers, and

an output layer. A single image or multiple images are fed as inputs to the input layers.

The input layer parameters are the dimensions of the input image (height, width, channels).

The hidden layers contain a series of many convolution layers. These convolution layers

are responsible for learning image characteristics and provide a compact representation in

the form of feature maps with the help of inherent hierarchical patterns found in the image

data. While passing the input image through many convolution layers, the extracted simple

patterns are gradually combined to form an intricate pattern and, at last, forming the input

image itself.

For the convolution process, the input image is convolved with a weighted convolution filter.

The weights of the filter are automatically adjusted during the learning process by using

backpropagation. Every neuron in the convolution filter has a limited receptive field in the

region of the previous layer and operates within it. To introduce non-linearity and reduce

the training time, activation functions are used in CNN architectures. These activation

functions ensure that non-linear transformations are performed, making the CNN model

learn and solve a complex task. Activation functions such as Rectified Linear Unit (ReLU),

LeakyReLU, Sigmoid, and tanh are used for this purpose. Furthermore, CNN architectures

with multiple convolutional layers (typically more than 10) also employ batch regularization.

Batch regularization helps solve the internal covariate shift problem, which normalizes every

input to the next layer to have zero-mean and variance of 1.

To carry out spatial down-sampling, pooling layers are used. Pooling layers reduces the

dimension of the image, thereby reducing the number of parameters required to train the

network. Finally, in many cases like for an image classification task, the output layer of the

CNN architecture is a fully connected layer. After the feature extraction and dimensionality

reduction operations, all the neurons in the fully connected layer are connected to the ac-

tivation function of the previous layer. The activation values are summed for each neuron,

and the neuron with the highest value is given as the output.

To develop a CNN, the most prominent machine learning frameworks present are TensorFlow

and PyTorch. Both frameworks support various layers, such as convolution, pooling, fully

connected, and transposed convolutions. Popular CNN architectures for image classification

include GoogleNet given by the authors in [SLJ+15], ResNet introduced in [HZRS16], and

VGGNet proposed by the authors of [SZ15].

12 2 Fundamentals

Figure 2.4 shows a typical CNN created by stacking multiple convolution and pooling lay-

ers.

Figure 2.4: Typical CNN Architecture [MO18]

2.5 Convolution Layers

Convolution layers are the basic building blocks of CNNs. Convolution layers are referred to

as feature extraction layers. To extract features from images, convolution layers make use of

convolution filters. The process of extracting features from the images is as follows:

An input image (size x×y px) and a convolution filter is taken. Common filter sizes include

1×1, 3×3, 5×5, and 7×7. The image contains pixel information, and the convolution filter

consist of weights. These weights denote how important the pixel is at that location to

learn and extract features. The filter then slides across the entire x, y dimension of the

image. During the sliding operation, the dot product between the filter’s location and the

image’s pixels at that location is computed. The resulting dot product generates a 2D

feature map. When there are several of these filters, each of these filter produces a feature

map respectively. All of the generated feature maps are stacked on top of each other to

produce the final convolution output. One pass of the convolution operation is illustrated in

Figure 2.5:

In Figure 2.5, red, blue, and green are three different filters applied on the input channel

(image frame). These filters then slide over the whole input channel, where their final results

are summed up, and the final output volume is produced. The dimension of the output

volume is controlled with the help of the following hyperparameters:

2.5 Convolution Layers 13

Figure 2.5: Example of Convolution Operation [Sah17]

• Zero-Padding (p): With the help of padding, the input can be padded around the

border with zero. This helps in manipulating the spatial dimensions of the output

volume.

• Stride (s): Striding helps to control the sliding operation of the filter. A stride of 1

indicates that the filter is moved by 1 pixel at a time in both x and y direction. Higher

stride values lead to dimensionality reduction.

• Number of Filters (fc): This parameter allows to control the depth of output volume.

For example, if 32 filters are used, the output volume will be of size x × y × 32.

In mathematical terms, the dimension of the obtained output volume is given as:

[n, n, nc] , [f, f, nc] =

[⌊

n+ 2p− f

s
+ 1

⌋

,

⌊

n+ 2p− f

s
+ 1

⌋

, nf

]

(2.4)

In Equation 2.4, n denotes image size, nc denotes number of channels in the image (generally

3 denoting RGB), f denotes number of filters, p denotes padding size, s denotes the size of

stride and nf indicates the number of channels in the output convolution volume.

Convolution layer is implemented in TensorFlow using the following syntax:

14 2 Fundamentals

1 tf.keras.layers.Conv2D

2 (

3 filters, kernel_size, strides=(1, 1), padding=’valid’, data_format=None,

4 dilation_rate=(1, 1), groups=1, activation=None, use_bias=True,

5 kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’,

6 kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,

7 kernel_constraint=None, bias_constraint=None, **kwargs

8)

1 #layer Declaration

2 self.i1= InputLayer(input_shape=(436,1024,3))

3 self.conva_1= Conv2D(64,7,strides=2,padding=’same’)

4

5 #Layer Definition

6 i_1=self.i1(input1)

7 cona1=self.conva_1(i_1)

The code snippet above illustrates an example of a convolution layer implemented in the

MultiFlow model.

2.6 Transposed Convolution Layers

The transposed convolution layer is the opposite of the convolution layer. The transposed

convolution layer is also known by the name of Upconvolution. The whole idea of transposed

convolution is to perform the convolution operation in the opposite direction. In convolution,

a pixel value in the feature map contributes to a region in the input image. In contrast,

transposed convolution layers tries to reproduce the same image region from the pixel value of

the feature map. Transposed convolution layers are popularly used in semantic segmentation

networks such as U-Net proposed in [RFB15], and optical flow networks. The transposed

convolution operation is illustrated in Figure 2.6:

In Figure 2.6, a filter of size 3×3 along with a stride value of 1 is used, which upsamples the

image size from 2×2 to 3×3. The filter is multiplied with each element of the image. The

resulting feature maps are stacked and overlapped with each other to upsample the image

size.

2.6 Transposed Convolution Layers 15

Figure 2.6: Example of Transposed Convolution Operation [Lie]

Transposed convolution layer in TensorFlow is implemented using the following syntax:

1 tf.keras.layers.Conv2DTranspose

2 (

3 filters, kernel_size, strides=(1, 1), padding=’valid’, output_padding=None,

4 data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True,

5 kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’,

6 kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,

7 kernel_constraint=None, bias_constraint=None, **kwargs

8)

1 #layer Declaration

2 self.dc5= Conv2DTranspose(512,4,strides=2,padding=’same’)

3 self.up_6to5= Conv2DTranspose(2,4,strides=2,padding=’same’)

4

5 #Layer Definition

6 dc_5=self.dc5(con6_1_act)

7 ups_6to5=self.up_6to5(pf_6)

The code snippet above illustrates an example of a transposed convolution layer implemented

in the MultiFlow model.

16 2 Fundamentals

2.7 Autoencoder - An Encoder Decoder Architecture

Autoencoders are a special type of CNN. They are referred to as regenerative architectures.

Autoencoders are made up of two types of networks: an encoder network and a decoder

network. The autoencoder architecture consists of convolution and transposed convolution

layers for the task of image regeneration. Long Short Term Memory (LSTM) networks

are used in autoencoders for text regeneration. The architecture of an autoencoder is as

follows:

Figure 2.7: Autoencoder Architecture

• Encoder Network: The encoder network takes the original image/text as an input.

Afterwards, the image/text information is encoded in the form of features using the

convolution layers and passed further to the hidden layers of the neural network. The

features are then passed to the decoder network. Thus, the encoder network can be

seen as a compressor since these features are compressed using convolution layers.

• Decoder Network: The decoder network takes the compressed features as the inputs.

From the compressed features, the decoder network tries to reproduce the original

image/text using the transposed convolution layers to extract information from the

features.

The autoencoders have become one of the favorite research topics in the field of machine

learning where their applicability is seen in computer vision tasks such as Semantic Seg-

2.8 Dataset 17

mentation, Genetive Adversarial Networks (GANS), Optical Flow computation, and also in

tasks related to Natural Language Processing (NLP) such as Text Generation.

The architecture of the proposed MultiFlow model in this thesis is similar to an autoencoder

network. The contractive network (initial convolution layers and the correlation layers) are

part of an encoder network, and the refinement network is part of the decoder network.

2.8 Dataset

Neural networks require a large amount of training data because they learn from the training

dataset and make predictions on the test (unseen) dataset. Since datasets can contain

diversified information, it often leads to them being balanced or unbalanced. A balanced

dataset has an equal number of images for all the categories present in the dataset. An

unbalanced dataset does not contain an equal number of images for all the categories. From

empirical studies it has been found that the CNN model that learns through a balanced

dataset performs better. On the other hand, a model that learns through an unbalanced

dataset tends to have a bias while making a prediction towards the majority class. Work

done by the authors of [JK19] also affirms that the neural networks have better prediction

accuracy when working with a balanced dataset.

Image datasets are preferred for CNNs, while time-series datasets are preferred for LSTM

networks. Dataset generation are of various types:

• Real-life datasets - These datasets, as the name suggests, contain information and

data about real-life entities that are captured through camera and motion sensors.

For example, the KITTI 2012 dataset described in [GLU12], and KITTI 2015 dataset

introduced in [MG15] contains motion information about a car moving on the road

and capturing motion information in its surrounding.

• Synthetic datasets - These datasets are artificially generated datasets through com-

puters. These datasets cannot mirror real-life scenarios, but they try to imitate them

as much as possible. For example, MPI Sintel dataset proposed in [BWSB12] or the

Flying Chairs dataset given by the authors of [DTSB15].

For training a neural network to estimate optical flow, several datasets are present. Table

2.1 gives a detailed description of widely used optical flow datasets.

18 2 Fundamentals

Dataset Image Frame Pairs Image Frames with Ground-Truth
KITTI 2012 194 194
KITTI 2015 200 200
Flying Chairs 22872 22872
MPI Sintel 1041 1041

Table 2.1: Size of Various Optical Flow Datasets

2.8.1 MPI Sintel Dataset

MPI Sintel is a dataset inspired by a short 3D film named Sintel. Although all of the

datasets mentioned above are very popular for estimating optical flow, in this thesis the

primary choice for training the MultiFlow model is the MPI Sintel dataset. The reasons are

as follows:

• The main idea behind the MultiFlow model developed in this thesis is to use image

frame triplets to estimate optical flow. Such kind of data is only present in the MPI

Sintel dataset. Although KITTI 2012/2015 dataset has consecutive image frames, the

dataset consists of fewer training image frames with ground-truth optical flow. Also,

the Flying Chairs dataset only consists of discrete consecutive image pairs. Hence, the

Flying Chairs and KITTI 2012/2015 datasets cannot be used to train the MultiFlow

model.

• The MPI Sintel dataset contains different scenes with different motion characteristics,

thereby helping the MultiFlow model learn varied motions and generalize its perfor-

mance better than the existing models. MPI Sintel consists of 1041 image pairs. How-

ever, due to the requirement of the MultiFlow model, these image pairs are rearranged

to form 1018 image frame triplets.

• For performance evaluation several models presented in Chapter 5 use this dataset.

Therefore, the MPI Sintel dataset serves as the best choice for the MultiFlow model.

Table 2.2 provides a detailed description of the MPI Sintel dataset.

Dataset MPI Sintel
Image Resolution 436 * 1024 px

Total Scenes 23
Scenes with 50 Image Frames 19
Scenes with <50 Image Frames 4

Table 2.2: MPI Sintel Dataset Details

2.8 Dataset 19

.f lo are ground-truth optical flow files that contain the 2D vector field of the optical flow.

Furthermore, the dataset is rendered into three categories based on various complexity levels:

albedo, clean, and final. The characteristics of each render category are as follows:

1. Albedo: Image frames are rendered as 2D, satisfying the constraint of constant bright-

ness assumption everywhere except in the regions of occlusion. Figure 2.8 and 2.9 shows

the consecutive image frames of the albedo category and Figure 2.10 shows the optical

flow between them.

2. Clean: Enhances the image frames with natural shading, lighting effects, and cast

shadows, thereby enhancing the details in the image frames. Figure 2.11 and 2.12

shows the consecutive image frames of the clean category and Figure 2.13 shows the

optical flow between them.

3. Final: Image frames are further enhanced by using motion blur, focus blur making

the image frames look as real and cinematic as possible. Figure 2.14 and 2.15 shows

the consecutive image frames of the final category and Figure 2.16 shows the optical

flow between them.

Although the image frames from all the categories have different texture characteristics, they

exert the same motion, hence the optical flow between the image frame F1 and image frame

F2 of all the categories is the same.

20 2 Fundamentals

F
igure

2.8:
A
lb
ed
o
F
ram

e
F
1
[B
W

S
B
12]

F
igure

2.9:
A
lb
ed
o
F
ram

e
F
2
[B
W

S
B
12]

F
igure

2.10:
O
p
tical

F
low

[B
W

S
B
12]

F
igure

2.11:
C
lean

F
ram

e
F
1
[B
W

S
B
12]

F
igure

2.12:
C
lean

F
ram

e
F
2
[B
W

S
B
12]

F
igure

2.13:
O
p
tical

F
low

[B
W

S
B
12]

F
igure

2.14:
F
in
al

F
ram

e
F
1
[B
W

S
B
12]

F
igure

2.15:
F
in
al

F
ram

e
F
2
[B
W

S
B
12]

F
igure

2.16:
O
p
tical

F
low

[B
W

S
B
12]

3 Related Work

This chapter describes the prominent works done for optical flow estimation using consecutive

image frame pairs and consecutive image frame triplets with the help of Convolution Neural

Networks (CNNs). A comparative study between the image frames pairs and image frame

triplets approaches is performed. Decisions taken for developing the MultiFlow model are

underlined.

3.1 Image Frame Pairs Approaches

This section describes the foundational works done for optical flow estimation using CNNs

with the help of two consecutive image frames.

• Fischer et al. in [DFI+15] proposed two CNN based models which are fully end-to-end

trainable. FlowNetSimple (FlowNetS) is the first model, which uses consecutive image

pairs to estimate the optical flow. It is a sequential neural network model where the

input image frames are stacked together. These image frames pass through a series

of convolution layers, where features are extracted from the image frames, and the

model then estimates the optical flow. FlowNetCorrelation (FlowNetC) is another

variant of FlowNet models where two input streams merge into a correlation layer.

In FlowNetC, learning image features of the two image frames is not sufficient for

optical flow estimation, since the features of the two image frames do not have any

one-to-one correspondence between them. An additional layer is required to find the

correspondences between the two feature maps and match the pixels between them.

A correlation layer is used to perform the correspondence matching, which correlates

pixels between two feature maps and then computes optical flow. FlowNetC can predict

complete flow fields and gives promising results on optical flow benchmark datasets.

FlowNetS and FlowNetC obtained good results on the Flying Chairs and MPI Sintel

dataset which paved the way for CNNs to be used in the task of optical flow estimation.

24 3 Related Work

Advantages of FlowNetC:

– Good performance on the Flying Chairs and the MPI Sintel Dataset.

– Use of non-weighting correlation layer for dense correspondence matching between

the pixels of the feature maps.

Disadvantage of FlowNetC:

– Designed only for two consecutive image frames.

• PWC-Net introduced by the authors in [SYLK18] is another prominent architecture

which computes optical flow using pyramidal structure, image warping techniques, and

cost volume. Using convolution layers a l-level feature pyramid is constructed. After

constructing the feature pyramid, the features of the second image frame are warped

with the upsampled flow to obtain the first image frame in the warping layer. Since in-

terpolation techniques are used, the warped image is not a perfect reconstruction. After

this, the first image frame and the warped image frame are passed to the cost volume

layer, where a pixel matching function is executed. PWC-Net performed significantly

better than the FlowNet models on the MPI Sintel dataset.

• Limitation: All the architectures mentioned above have the limitation that they can

estimate optical flow while using only two consecutive image frames.

3.2 Multiple Image Frames Approaches

This section describes the foundational works performed for optical flow estimation using

CNNs with the help of consecutive image frames in the form of image triplets. All the models

mentioned below are used for evaluation purposes against the MultiFlow model in this thesis

in Chapter 5.

• PWC-Fusion introduced in [RGS+19] is a CNN architecture which estimates optical

flow using multiple image frames. PWC-Fusion architecture is similar to PWC-Net

and uses the same pyramid structure, warping, and cost volume technique for flow

estimation. Multiple execution of the PWC-Net model is performed and the resulting

flow fields are fused together in PWC-Fusion model.

Advantage of PWC-Fusion:

– Has best performance on the final render category of MPI Sintel dataset.

3.2 Multiple Image Frames Approaches 25

Disadvantage of PWC-Fusion:

– Cannot predict the optical flow by executing the model only once. The model is

executed 3 times to estimate a single optical flow field.

• Another architecture that works on a multi-frame approach for optical flow estimation

is introduced in [YCVDWM20] called TIMCflow. The TIMCflow model uses a pre-

trained CNN extractor for feature extraction. It uses an image matching cost function

(also called a likelihood function) for optical flow estimation. The authors use the pre-

vious and future image frames in the likelihood function and utilize the local constancy

assumption of optical flow to estimate the flow field in the occluded regions of image

frames.

• One more architecture to use multiple image frames for optical flow estimation intro-

duced by the authors of [WSLB17] is MR-Flow. The architecture of MR-Flow uses a

mixture of an optical flow network and a semantic segmentation network to estimate

the optical flow. The semantic segmentation network is used to separate the static

(rigid regions) and moving regions of the image frames. The flow in these regions is

estimated separately and later combined to obtain the final optical flow.

Drawback of MR-Flow:

– High computation time to estimate optical flow since it requires the execution of

several neural networks. The optical flow is estimated in 2 minutes per image

frame triplet by the model.

• The architecture of ProFlow proposed in [MB18] also uses multiple image frames, and

it is trained using unsupervised learning techniques. ProFlow computes backward and

forward flow between the image triplets. ProFlow combines and refines the forward

and backward flow to estimate the complete optical flow field. To combine the forward

and backward flow, ProFlow uses the technique of interpolation.

Advantage of ProFlow:

– Even though ProFlow model is trained using unsupervised learning technique,

it outperforms the supervised models such as TIMCflow and MR-Flow, since

the results obtained by the work of authors in [Lov02] show that unsupervised

trained models do not perform as good as models trained using supervised training

techniques.

26 3 Related Work

Disadvantage of ProFlow:

– High computation time to predict the optical flow field. After passing an image

frame triplet as the input, the optical flow is predicted in 112 seconds.

Figure 3.1 illustrates the chronological order of various CNN based optical flow estimation

models.

Figure 3.1: Timeline of CNN based Optical Flow Estimation Models

3.3 Why MultiFlow?

• The inspiration behind developing the MultiFlow model was taken from the results

obtained by the models that used multiple image frames for optical flow estimation.

These models regularly outperformed the models which used image frame pairs for op-

tical flow estimation. Hence, developing a model which uses multiple image frames for

3.3 Why MultiFlow? 27

optical flow estimation was a compelling reason due to the performance gains obtained

using this approach.

• FlowNetC model uses an additional correlation layer for correspondence matching be-

tween the pixels. Hence, the FlowNetC model performed better than the FlowNetS

model for all datasets with the exception of the final render category of the MPI Sintel

dataset. FlowNetC model has also been used in several works such as [IMS+17], where

FlowNetC is a sub-part of the FlowNet2 model or [MHR18] where FlowNetC is stacked

with other networks and trained in the unsupervised learning method. Also, the image

pair based PWC-Net model has an advanced variant named PWC-Fusion, which used

multiple image frames to estimate optical flow. However, no such exploration of the

original FlowNetC model was performed where the standalone FlowNetC model used

multiple image frames. Hence, the reasons mentioned above served as the inception of

MultiFlow model development.

28 3 Related Work

4 Development & Implementation

This chapter explains in detail the implementation of the MultiFlow model. First, the

original FlowNetC model is explained on which the MultiFlow model is based. The working

of correlation operation is also explained in detail. Furthermore, the chapter explains the

implementation of the MultiFlow model to estimate optical flow using image frame triplets.

Afterwards, the chapter specifies the hardware and software resources used to develop and

train the MultiFlow model. Finally, the chapter investigates various training procedures to

train the MultiFlow model.

4.1 Original FlowNetC Architecture

For the task of supervised optical flow estimation, many CNN models have been developed.

However, most of the CNN models for optical flow estimation are inspired from the FlowNetS

and FlowNetC model based on the results they achieved on the Flying Chairs and MPI Sintel

dataset.

The idea for developing FlowNetC given by Fischer et al. in [DFI+15] was based on the

applicability of Convolutional Neural Networks (CNNs) for solving computer vision-related

task. The FlowNetC model has three key components. The first component in the con-

tractive network which is used for generating the features from the image frames. The next

component is the correlation layer that generates a correlation cost volume using the features

maps. The final component is a multi-stage refinement network that outputs the predicted

flow fields in various dimensions. The working of each component is described below.

4.1.1 Contractive Network of FlowNetC

The FlowNetC model has two separate input streams for each image frame. These input

layer is followed by a series of three convolution layers for feature extraction. Both the

30 4 Development & Implementation

input streams have identical layer structure. The idea behind such an architecture is to

obtain meaningful representations of the image frames in the form of feature maps before

estimating the optical flow.

The next step is to take a patch of features from the first feature map and compare it

with the patch of features at the same location in the second feature map to compute pixel

correspondences between the two feature maps.

4.1.2 Correlation Layer

The correlation layer is used to combine the two feature maps and find dense pixel cor-

respondences between these feature maps. The correlation layer performs multiplicative

patch comparison between the two feature maps. The working of the correlation layer is as

follows:

• Input: Two feature maps f1 and f2 of the input image frames with width = w, height

= h, and number of channels = c, where f1, f2 : R2 → RC .

• Output: Correlation volume containing the outputs of the multiplicative patch com-

parisons from the feature maps f1 and f2.

• Process: The working of one pass of the multiplicative patch comparison is as follows:

The correlation between the patches of two feature maps f1 and f2 centered at locations

x1 and x2 in respective maps is computed using the following formula:

c(x1, x2) =
∑

o∈[−k,k]∗[−k,k]

〈f1(x1 + o), f2(x2 + o)〉 (4.1)

In Equation 4.1 correlation is computed for a patch of size K = 2k+1. The process of

computing the correlation between the feature maps is similar to the process of convo-

lution. In convolution operation, a convolution filter is convolved with the pixel data

from the feature map. In contrast, in correlation operation, data from the first feature

map is convolved with data from the second feature map, resulting in a correlation

volume. It is due to this reason the correlation volume does not consist of any weights.

Hence, this layer is not trained during the training process of the neural network.

One patch of correlation computation involves c×K2 multiplication operations. Com-

puting the correlation volume over the whole width and height of the image frames

4.1 Original FlowNetC Architecture 31

multiplies the multiplicative operations by the number of w2 × h2, thereby making the

process computationally expensive.

In order to reduce the computations, a displacement window d is defined for each

location in x1 over which correlation cost c(x1, x2) is computed in the local region of

D = 2d + 1, thereby reducing the range of x2. Also striding parameters s1 & s2 are

introduced to quantize the locations x1 & x2. Figure 4.1 illustrates the correlation

operation between two feature maps.

Figure 4.1: Correlation Operation between Two Features Maps

In Figure 4.1, the blue region denotes the features maps of the image frames. The red

region indicates the displacement window over which the correlation is computed using

the 1 × 1 kernel denoted by yellow color.

Correlation layer syntax in TensorFlow is as follows:

1 tfa.layers.CorrelationCost(kernel_size: int, max_displacement: int, stride_1:

int, stride_2: int, pad: int, data_format: str, **kwargs)}}

For optical flow estimation, Figure 4.2 illustrates the contractive network of FlowNetC. In

the figure, two input streams are present for two consecutive image frames. The two image

frames go through a series of three convolution layers that extract features from the image

frames. A correlation layer is then used, which computes the correlation volume between

32 4 Development & Implementation

Figure 4.2: Standard FlowNetC Architecture [DFI+15]

the feature maps. As mentioned earlier, since the correlation volume does not consist of any

weights, a feature map of the first input stream is concatenated with the correlation volume,

thereby adding meaningful information to the correlation volume. The correlation volume

then passes through a series of seven convolution layers where more features are extracted.

1 #MultiFlow Model

2

3 class MultiFlow(tf.keras.Model):

4 # Layer declaration

5 def __init__(self):

6 super(MultiFlow, self).__init__()

7 self.i1= InputLayer(input_shape=(436,1024,3)) #(Height,Width,Channels)

8 self.i2= InputLayer(input_shape=(436,1024,3))

9

10 #Input path-1

11 self.conva_1= Conv2D(64,7,strides=2,padding=’same’) #Convolution layer

12 self.conva_1_act = LeakyReLU(alpha=0.1) # LeakyRelu function

13 self.conva_2= Conv2D(128,5,strides=2,padding=’same’)

14 self.conva_2_act = LeakyReLU(alpha=0.1)

15 self.conva_3= Conv2D(256,5,strides=2,padding=’same’)

16 self.conva_3_act = LeakyReLU(alpha=0.1)

17

18 #Input path-2

19 self.convb_1= Conv2D(64,7,strides=2,padding=’same’)

20 self.convb_1_act =LeakyReLU(alpha=0.1)

21 self.convb_2= Conv2D(128,5,strides=2,padding=’same’)

22 self.convb_2_act =LeakyReLU(alpha=0.1)

23 self.convb_3= Conv2D(256,5,strides=2,padding=’same’)

4.1 Original FlowNetC Architecture 33

24 self.convb_3_act =LeakyReLU(alpha=0.1)

25

26 #Correlation layer

27 self.cc = CorrelationCost(1,20,1,2,20,data_format=’channels_last’)

28 #LeakyRelu for correaltion volume

29 self.cr_1_act= LeakyReLU(alpha=0.1)

30 #Convolution redir for features for correlation volume

31 self.conva_redir= Conv2D(32,1,strides=1)

32 self.conva_redir_act =LeakyReLU(alpha=0.1)

33 self.vol_1= Concatenate(axis=3)

34

35 #Layer Definition

36 def call(self, input1,input2,training=False):

37 #Layer Definition for Input path-1

38 i_1=self.i1(input1)

39 cona1=self.conva_1(i_1)

40 cona1_act=self.conva_1_act(cona1)

41 cona2=self.conva_2(cona1_act)

42 cona2_act=self.conva_2_act(cona2)

43 cona3=self.conva_3(cona2_act)

44 cona3_act=self.conva_3_act(cona3)

45

46 #Layer Definition for Input path-2 same as Input path-1

47

48 #Layer Definition for Correlation Volume

49 cc1=self.cc([cona3_act,conb3_act])

50 cc1_act=self.cr_1_act(cc1)

51 cona_r=self.conva_redir(cona3_act)

52 cona_r_act=self.conva_redir_act(cona_r)

53 v1=self.vol_1([cc1_act,cona_r_act])

The code snippet above shows the implementation of the correlation layer in the MultiFlow

model. The In the class API of TensorFlow, all the layers are declared with the required

arguments in the def init function and called using the def call function. In the def init

function on line 7-8, input layers are defined where the image frames are taken as input.

Line 11-16 indicates the convolution layers used for the first input stream. Line 21 declares

the correlation layer with the values of the respective arguments. Line 25 declares the

convolution layer used for concatenating with the correlation volume, and line 27 declares

34 4 Development & Implementation

the concatenation layer. In the def call function, all the layers declared above are called,

line 31-38 performs the convolution operations for the first input stream. Line 43 performs

the correlation operation, and line 47 performs the concatenation of the correlation with the

convolution layer of the first input stream.

4.1.3 Refinement Network of FlowNetC

The refinement network of FlowNetC has modifications to the approaches used by Long et

al. in [LSD15] and Dosovitskiy et al. in [DTSB15]. These modifications are as follows:

1. In the neural network model presented by Long et al. a single patch from the coarse

prediction is upsampled using a transposed convolution layer (refer 2.6) and this process

is repeated for all the patches of the coarse prediction. In contrast, Fischer et al.

upsamples the whole coarse prediction at once in the FlowNetC model.

2. Dosovitskiy et al. also used the transposed convolution layers to upsample coarse pre-

dictions. However, Fischer et al. modified this approach by upsampling the coarse pre-

dictions and concatenating the upsampled coarse predictions with feature maps from

the contractive network of the FlowNetC model. This allowed for more information

to be passed to the refinement network of the FlowNetC model to obtain fine-grained

optical flow predictions.

Figure 4.3: Refinement Network of FlowNetC [DFI+15]

Figure 4.3 illustrates the refinement network of the FlowNetC model. The refinement net-

work uses transposed convolution layers at each level to upsample the coarse predictions.

By performing this operation at each level of the refinement network, the resolution of the

4.2 Implementation of MultiFlow 35

coarse prediction increases by twice (2X). As mentioned above at each stage, the upsampled

coarser flow prediction and the feature maps from the contractive network are concatenated

using skip connections. In skip connections the output of a convolution layer is passed to the

next convolution layer along with a copy passed to some other layer of the neural network.

The idea behind performing the concatenation is to help the FlowNetC model learn dis-

placement patterns efficiently. This is done by providing the refinement network, local pixel

information of the feature maps from the contractive network and, at the same time, provid-

ing information obtained from the coarser predictions. The upsampling process is performed

four times, which increases the resolution of the flow predictions. However, the resolution

of the predicted flow field is still four times (4X) smaller than the original input resolution.

The reason for this is because more convolution layers are applied on the image frame in the

contractive network of the FlowNetC model as opposed to the transposed convolution layers

in the refinement network.

Fischer et al. observed that adding more refinement layers did not help to increase accuracy

performance of the FlowNetC model. Adding more refinement layers was proving to be

computationally expensive because it increased the number of trainable parameters in the

FlowNetC model. Hence, 4X bilinear upsampling (a technique used to resize image frames

using bilinear interpolation) is used for obtaining the flow in the original resolution. Bilinear

upsampling is computationally less expensive since it had no trainable weights and provided

satisfactory results. The output of the FlowNetC model was the optical flow field between

the consecutive image frames which did not require any post-processing of the predicted

flow.

4.2 Implementation of MultiFlow

As mentioned earlier, the FlowNetC model is one of the first deep learning neural networks

to estimate optical flow. However, it has a limitation. The FlowNetC model’s limitation is

that it estimates the optical flow by only using two consecutive image frames. Due to this

constraint, the optical flow that is obtained from the FlowNetC model is not consistently

accurate. To solve the limitation mentioned above, the MultiFlow model is developed. The

MultiFlow model is based on FlowNetC architecture, which inherits the basic idea of the

FlowNetC architecture, but modifies it for estimating optical flow by using more than two

consecutive image frames. In this case, the MultiFlow model uses consecutive image frames

in the form of image frame triplets.

36 4 Development & Implementation

4.2.1 Contractive Network of MultiFlow

The difference between the original FlowNetC model and the MultiFlow model is the in-

clusion of an additional input stream for the third image frame and more learning layers in

the contractive network to extract features and learn the flow characteristics. To estimate

optical flow using the MultiFlow model, three input image frames Image I1, Image I2 and

Image I3 are used. Figure 4.6 illustrates the contractive network of the MultiFlow network

with the modifications highlighted in the red box. The figure is present at the end of the

chapter. Similar to the original FlowNetC architecture, first I1 and I2 are passed through a

series of convolution layers and the correlation volume CR1 between I1 and I2 is computed.

Then the feature map Conv3 of I1 is concatenated with the correlation volume CR1.

• Modifications:

Simultaneously, I2 and I3 are passed through a series of convolution layers, and the

correlation volume CR2 between I2 and I3 is computed. Similarly, the feature map

Conv3 of I2 is concatenated with the correlation volume CR2. All the three input

streams have the same layer architecture.

After calculating the two correlation volumes, CR1 and CR2 are passed through convo-

lution layers Conv cr1 and Conv cr2 for extracting more features from the correlation

volumes CR1 and CR2. The final correlation volume CR3 between the convolution

layers is then computed. Similarly, the feature map Conv cr1 of the correlation volume

CR1 is concatenated with the correlation volume CR3. The correlation volume CR3

of the MultiFlow model passes through seven convolution layers, where more features

are extracted from CR3.

The reason for considering this type of architecture is because I3 is used for providing

more motion information for predicting the flow between I1 and I2. Additional convo-

lution layers are used to extract features from I3 and correlation volumes. Also, the

correlation layer can only take features map as inputs to perform the correlation op-

eration. Hence, after computing CR1 and CR2, they are passed through convolution

layers to obtain Conv cr1 and Conv cr2. Additional correlation layers are used to

perform simultaneous correlation between between I1, I2 and I2, I3. Computing third

correlation CR3 performs correlation among correlation volumes, thereby helping the

neural network to interrelate the three image frames with other, which makes the neu-

ral network easier to understand the displacement vectors between the pixels of all the

three image frames. Since, the image frames are consecutive, it helps to obtain better

optical flow in terms of accuracy and smoothness.

4.2 Implementation of MultiFlow 37

1 #MultiFlow Model

2

3 class MultiFlow(tf.keras.Model):

4 # Layer declaration

5 def __init__(self):

6 super(MultiFlow, self).__init__()

7 self.i1= InputLayer(input_shape=(436,1024,3)) #(Height,Width,Channels)

8 self.i2= InputLayer(input_shape=(436,1024,3))

9 self.i3= InputLayer(input_shape=(436,1024,3))

10

11 #Input path-1

12 self.conva_1= Conv2D(64,7,strides=2,padding=’same’) #Convolution layer

13 self.conva_1_act = LeakyReLU(alpha=0.1) # LeakyRelu function

14 self.conva_2= Conv2D(128,5,strides=2,padding=’same’)

15 self.conva_2_act = LeakyReLU(alpha=0.1)

16 self.conva_3= Conv2D(256,5,strides=2,padding=’same’)

17 self.conva_3_act = LeakyReLU(alpha=0.1)

18

19 # Layer Declaration for Input path-2 same as Input path-1

20

21 # Layer Declaration for Input path-3 same as Input path-1

22

23 #Correlation layer for CR1

24 self.cc = CorrelationCost(1,20,1,2,20,data_format=’channels_last’)

25 #LeakyRelu for correaltion volume

26 self.cr_1_act= LeakyReLU(alpha=0.1)

27 #Convolution redir for features for correlation volume

28 self.conva_redir= Conv2D(32,1,strides=1)

29 self.conva_redir_act =LeakyReLU(alpha=0.1)

30 self.vol_1= Concatenate(axis=3)

31

32 #Correlation layer declaration for CR2 same as CR1

33

34 #Passing CR1 and CR2 through convolution layers

35 self.conv_v1= Conv2D(256,5,strides=1,padding=’same’)

36 self.conv_v1_act =LeakyReLU(alpha=0.1)

37 self.conv_v2= Conv2D(256,5,strides=1,padding=’same’)

38 self.conv_v2_act =LeakyReLU(alpha=0.1)

38 4 Development & Implementation

39

40 #Correlation between volumes CR1 and CR2

41 self.cr_3_act= LeakyReLU(alpha=0.1)

42 self.conv_v1_redir= Conv2D(32,1,strides=1)

43 self.conv_v1_redir_act =LeakyReLU(alpha=0.1)

44 self.vol_3= Concatenate(axis=3)

45

46 #Single seven convolution stream

47 self.conv3_1= Conv2D(256,3,strides=1,padding=’same’)

48 self.conv3_1_act= LeakyReLU(alpha=0.1)

49 self.conv4= Conv2D(512,3,strides=2,padding=’same’)

50 self.conv4_act= LeakyReLU(alpha=0.1)

51 self.conv4_1= Conv2D(512,3,strides=1,padding=’same’)

52 self.conv4_1_act= LeakyReLU(alpha=0.1)

53 self.conv5= Conv2D(512,3,strides=2,padding=’same’)

54 self.conv5_act= LeakyReLU(alpha=0.1)

55 self.conv5_1= Conv2D(512,3,strides=1,padding=’same’)

56 self.conv5_1_act= LeakyReLU(alpha=0.1)

57 self.conv6= Conv2D(1024,3,strides=2,padding=’same’)

58 self.conv6_act= LeakyReLU(alpha=0.1)

59 self.conv6_1= Conv2D(1024,3,strides=1,padding=’same’)

60 self.conv6_1_act= LeakyReLU(alpha=0.1)

61

62

63 #Layer Definition

64 def call(self, input1,input2,input3,training=False):

65 #Layer Definition for Input path-1

66 i_1=self.i1(input1)

67 cona1=self.conva_1(i_1)

68 cona1_act=self.conva_1_act(cona1)

69 cona2=self.conva_2(cona1_act)

70 cona2_act=self.conva_2_act(cona2)

71 cona3=self.conva_3(cona2_act)

72 cona3_act=self.conva_3_act(cona3)

73

74 #Layer Definition for Input path-2 same as Input path-1

75

76 #Layer Definition for Input path-3 same as Input path-1

77

4.2 Implementation of MultiFlow 39

78 #Layer Definition for Correlation volume CR1

79 cc1=self.cc([cona3_act,conb3_act])

80 cc1_act=self.cr_1_act(cc1)

81 cona_r=self.conva_redir(cona3_act)

82 cona_r_act=self.conva_redir_act(cona_r)

83 v1=self.vol_1([cc1_act,cona_r_act])

84

85 #Layer Definition for Correlation volume CR2 same as CR1

86

87 #Layer Definition for passing CR1 and CR2 through convolutions

88

89 #Layer Definition for Correlation volume CR3

90 cc3=self.cc([con_v1_act,con_v2_act])

91 cc3_act=self.cr_3_act(cc3)

92 con_v1_r=self.conv_v1_redir(con_v1_act)

93 con_v1_r_act=self.conv_v1_redir_act(con_v1_r)

94 v3=self.vol_3([cc3_act,con_v1_r_act])

The code snippet above explains the implementation of the contractive network of the Mul-

tiFlow model. In the def init function on line 7-9, input layers are defined where the

image frame triplets are taken as input. Line 12-17 indicates the convolution layers used

for the first input stream. Line 24 declares the correlation layer with the arguments. Line

28 declares the convolution layer used for concatenating with the correlation volume, and

line 30 declares the concatenation layer. Line 35-38 declares the convolution layers through

which correlation volumes are passed. Line 41-44 declares the correlation layer for perform-

ing correlation among correlation volumes. Line 47-60 declares the convolution layer for the

convolution stream. In the def call function, all the layers declared above are called, line

66-72 performs the convolution operations for the first input stream. Line 79 performs the

correlation operation, and line 83 performs the concatenation of the correlation with the

convolution layer first input stream. Line 90 performs the correlation among the correlation

volumes.

Table 4.1 gives detailed information for all the layers used to develop the contractive network

of the MultiFlow model. redir indicates the feature maps which are used to concatenate with

the correlation volumes. Apart from the input layers, all the other layers use LeakyReLU

(Leaky Rectified Linear Units) as their activation function since the original FlowNetC model

given in [DFI+15] uses LeakyReLU as the activation function. All the arguments for the

convolution layers and correlation layers are taken from the original FlowNetC model.

40 4 Development & Implementation

Layer Name Layer Type Kernel Size Filters Activation Stride
Image I1 Input Layer - - -
Image I2 Input Layer - - -
Image I3 Input Layer - - -
Conv1 Convolution Layer 7 x 7 64 Leaky ReLU 2
Conv2 Convolution Layer 5 x 5 128 Leaky ReLU 2
Conv3 Convolution Layer 5 x 5 256 Leaky ReLU 2

Conv3 redir Convolution Layer 1 x 1 32 Leaky ReLU 1
CR1 Correlation Layer - - Leaky ReLU
CR2 Correlation Layer - - Leaky ReLU

Conv cr1 Convolution Layer 5 x 5 256 Leaky ReLU 1
Conv cr2 Convolution Layer 5 x 5 256 Leaky ReLU 1

CR3 Correlation Layer - - Leaky ReLU
Conv cr1 redir Convolution Layer 1 x 1 32 Leaky ReLU 1

Conv3 1 Convolution Layer 3 x 3 256 Leaky ReLU 1
Conv4 Convolution Layer 3 x 3 512 Leaky ReLU 2
Conv4 1 Convolution Layer 3 x 3 512 Leaky ReLU 1
Conv5 Convolution Layer 3 x 3 512 Leaky ReLU 2
Conv5 1 Convolution Layer 3 x 3 512 Leaky ReLU 1
Conv6 Convolution Layer 3 x 3 1024 Leaky ReLU 2
Conv6 1 Convolution Layer 3 x 3 1024 Leaky ReLU 1

Table 4.1: Layer Details of Contractive Network of MultiFlow

4.2.2 Refinement Network of MultiFlow

The refinement network of the MultiFlow model consists of transposed convolution layers.

Due to the addition of the correlation and convolution layers in the contractive network of

the MultiFlow model, the refinement network also gets an additional upsampled flow.

• Modifications:

As opposed to the original refinement network architecture of FlowNetC, where four

upsampled flows are present, in MultiFlow, five upsampled flows are generated. This

can be seen in Figure 4.7. An additional upsampled flow arises due to the presence

of convolution Conv cr1 generated from the correlation volume CR1. Additional skip

connection from the contractive network is also used to refine the upsampled flow

prediction. Also, weights values are multiplied with upsampled flows while training the

neural network. This leads to a better prediction of the flow vectors which, are then

upsampled to obtain better dense per pixel predictions in original resolution. Figure

4.7 illustrates the refinement network of MultiFlow. The modifications are highlighted

in the red box. The figure is present at the end of the chapter.

4.2 Implementation of MultiFlow 41

1 class MultiFlow(tf.keras.Model):

2 # Layer declaration

3 def __init__(self):

4 super(MultiFlow, self).__init__()

5

6 #Refinement Network

7 #Layer declaration for Level 1 of Refinement Network

8 self.pf6= Conv2D(2,3,strides=1,padding=’same’) #Predicted flow

9 self.dc5= Conv2DTranspose(512,4,strides=2,padding=’same’) #Transpose

convolution

10 self.dc5_act= LeakyReLU(alpha=0.1)

11 self.up_6to5= Conv2DTranspose(2,4,strides=2,padding=’same’) #Upsampled flow

12 #Concating 3 streams convolution-features, transposed convolution,

upsampled_flow

13 self.con_5= Concatenate(axis=3)

14

15 #Layer declaration for Level 2, 3, 4, 5 of Refinement Network same as Level 1

16

17 #Final Predicted Flow

18 self.pf1= Conv2D(2,3,strides=1,padding=’same’)

19

20 #Layer Definition

21 def call(self, input1,input2,input3,training=False):

22 pf_6=self.pf6(con6_1_act)

23 dc_5=self.dc5(con6_1_act)

24 dc_5_act=self.dc5_act(dc_5)

25 ups_6to5=self.up_6to5(pf_6)

26 concat5=self.con_5([con5_1_act,dc_5_act,ups_6to5])

27

28 pf_1=self.pf1(concat1)

29

30 #Bilinear upsampling

31 flow=tf.image.resize(pf_1,tf.stack([436,1024]),method=’bilinear’)

32

33 return {’flow’: flow ,’predict_flow6’: pf_6, ’predict_flow5’: pf_5,

’predict_flow4’: pf_4, ’predict_flow3’: pf_3, ’predict_flow2’: pf_2,

’predict_flow1’: pf_1}

42 4 Development & Implementation

The code snippet above explains the implementation of the refinement network of the Mul-

tiFlow model. In the def init function on line 8-13, the layers of the first refinement level

are declared. Line 9 indicates the transposed convolution layer for upsampling the refine-

ment level later used in the def call function. Line 11 declares the transposed convolution

layer used for upsampling the predicted optical flow at each level. Line 13 declares the

concatenation layer. In the def call function, all the layers declared above are called, line

22-26 performs the first upsampling of the predicted optical flow. Line 28 indicates the final

predicted optical flow, which is then upsampled using bilinear interpolation on line 30. Line

32 returns the predicted flow at each refinement level for loss computation.

Table 4.2 gives detailed information for all the layers of the refinement network of the Mul-

tiFlow neural model. The Transposed Conv in the Layer column indicates transposed con-

volution layers. The transposed convolution layers use LeakyReLU (Leaky Rectified Linear

Units) as their activation function since the original FlowNetC model given in [DFI+15] uses

LeakyReLU as the activation function. All the arguments for the convolution and transposed

convolution layers are taken from the original FlowNetC model.

Layer Name Layer Type Kernel Filters Activation Stride
Predicted Flow6 Convolution Layer 3 x 3 2 - 1

Deconv5 Transposed Conv Layer 4 x 4 512 Leaky ReLU 2
Upsampled Flow 6to5 Transposed Conv Layer 4 x 4 2 - 2

Concat5 Concatenation Layer - - - -
Predicted Flow5 Convolution Layer 3 x 3 2 - 1

Deconv4 Transposed Conv Layer 4 x 4 256 Leaky ReLU 2
Upsampled Flow 5to4 Transposed Conv Layer 4 x 4 2 - 2

Concat4 Concatenation Layer - - - -
Predicted Flow4 Convolution Layer 3 x 3 2 - 1

Deconv3 Transposed Conv Layer 4 x 4 128 Leaky ReLU 2
Upsampled Flow 4to3 Transposed Conv Layer 4 x 4 2 - 2

Concat3 Concatenation Layer - - - -
Predicted Flow3 Convolution Layer 3 x 3 2 - 1

Deconv2 Transposed Conv Layer 4 x 4 128 Leaky ReLU 2
Upsampled Flow 3to2 Transposed Conv Layer 4 x 4 2 - 2

Concat2 Concatenation Layer - - - -
Predicted Flow2 Convolution Layer 3 x 3 2 - 1

Deconv1 Transposed Conv Layer 4 x 4 64 Leaky ReLU 2
Upsampled Flow 2to1 Transposed Conv Layer 4 x 4 2 - 2

Concat1 Concatenation Layer - - - -
Predicted Flow1 Convolution Layer 3 x 3 2 1

Flow Bilinear Interpolation (4X) - - - -

Table 4.2: Layer Details of Refinement Network of MultiFlow

4.3 Training Procedures 43

Table 4.3 gives detailed information of all the inputs to each of the concatenation layers in

the refinement network of the MultiFlow model.

Concatenation Layer Inputs
Concat5 Conv5 1, Deconv5, Upsampled Flow 6to5
Concat4 Conv4 1, Deconv4, Upsampled Flow 5to4
Concat3 Conv3 1, Deconv3, Upsampled Flow 4to3
Concat2 Conv cr1, Deconv2, Upsampled Flow 3to2
Concat1 Conv2, Deconv1, Upsampled Flow 2to1

Table 4.3: Inputs to the Concatenation Layer of Refinement Network of the MultiFlow Model

4.3 Training Procedures

4.3.1 Hardware and Software Resources

• Programming Language: Python.

• Machine Learning Framework: TensorFlow GPU 2.1.0, Keras API.

• Data Handling: Numpy and Pandas library from Python.

• Integrated Development Environement (IDE): Jupyter Notebook.

• Graphics Processing Unit (GPU): Google Colab GPUs namely Nvidia K80s, T4s,

P4s and P100s (dynamic allocation), GET Lab GPUs (Nvidia GTX 1080Ti).

4.3.2 Multi-Scale Loss Function

The loss function used to train the MultiFlow model is a multiscale weighted loss function.

The multi-scale loss function is also used to train the original FlowNetC, FlowNetS model

given in [DFI+15], PWC-Net model given in [SYLK18] and PWC-Fusion model given in

[RGS+19]. However, the loss function is adapted to accommodate the additional predicted

upsampled flow generated in the refinement network of the MultiFlow model. The loss

function multiplies the predicted flow obtained at each level of the refinement network with

a weight-factor denoting the importance of flow at that level. The weight values are obtained

after performing several experiments and incorporates the implementation of the average

44 4 Development & Implementation

Predicted Flows Weights
predicted flow6 0.32
predicted flow5 0.32
predicted flow4 0.32
predicted flow3 0.32
predicted flow2 0.32
predicted flow1 0.64

Table 4.4: Weights for Predicted Flows

end-point-error function for the loss computation of the MultiFlow model. The weights used

with the predicted flows are as follows:

The final predicted flow1 has a weight value double than that of all the previous predicted

flow. The last predicted flow contributes to the MultiFlow model’s most critical flow because

this flow is upscaled using bilinear interpolation. The idea behind associating weight factors

with the predicted flows is to penalize the predictions at early levels to obtain more refined

flows in subsequent levels of the refinement network. Figure 4.8 illustrates the implementa-

tion of upsampled flows along with their respective weights. The figure is present at the end

of the chapter.

1 def loss_function(real, pred):

2

3 pred6 = pred[’predict_flow6’]

4 size = [pred6.shape[1], pred6.shape[2]]

5 df6 = tf.image.resize(real, tf.stack(size))

6 epe6 = 0.32 * (a_epe(df6, pred6))

7

8 #Similar loss computation for epe5, epe4, epe3, epe2

9

10 pred1=pred[’predict_flow1’]

11 size = [pred1.shape[1], pred1.shape[2]]

12 df1 = tf.image.resize(real, tf.stack(size))

13 epe1 = 0.64 * (a_epe(df1, pred1))

14

15 #Loss addition

16 loss = tf.math.add_n([epe6,epe5,epe4,epe3,epe2,epe1])

17

18 return loss

4.3 Training Procedures 45

The code snippet above indicates the multi-scale loss function used in this thesis. Line

3-6 indicates the block of code for computing the loss of predicted flow obtained at each

refinement level. Line 4 extracts the dimension from the predicted flow and reshapes the

ground-truth optical flow using these dimensions. The loss is computed in line 6 with the

help of the average end-point-error discussed in Section 2.3. Line 11 adds all the losses and

sends the value for the training process.

4.3.3 Hyperparameter Optimization - Variable Learning Rate

The process of training a neural network is dependent on the gradient descent optimization

algorithm. This algorithm is used to find the minimum value of the loss function. The loss

function can also be referred to as the cost function. The cost function can be a mean squared

error or mean absolute error used for image classification task and binary cross-entropy in

case of binary segmentation of images. In this thesis, the loss function is the multi-scale

AEPE loss function. A neural network consists of various hyperparameters. Some of the

hyperparameters are optimizer, batch size, and learning rate. Perhaps the most crucial

hyperparameter is the learning rate of the neural network. After each epoch, the neural

network weights are updated, and the target is to minimize the value of the loss function.

The learning rate hyperparameter controls the amount by which these weights are updated.

Hence, the learning rate helps the neural network to reach the minimum value for its loss

function.

A large learning rate value results in the training process of a neural network to reach its

state of convergence faster. Convergence is the state when loss function value reaches its

minimum value. However, at the same time, a very large learning rate will make the model

update its weights at a faster rate, possibly making the loss function skip its minimum value

by overshooting over the minimum. On the other hand, a small learning rate for training

will require more time to reach convergence. Also, a very small learning rate will increase

the training time to an extent where the model will never converge. It is due to the reasons

mentioned above, choosing an appropriate learning rate is a crucial task.

While training a small neural network, the learning rate is kept constant, since the neural

network trains faster. However, while training deep neural networks such as MultiFlow, a

constant learning rate can lead to the model not yielding desirable results. The reason for

this is the number of parameters of a neural network. The MultiFlow consists of millions of

parameters, and optimizing each parameter becomes a challenging task.

46 4 Development & Implementation

The MultiFlow model is trained using a variable learning rate to deal with the challenges

mentioned above. A variable learning rate is one in which the learning rate increases or

decreases (in our case decreases) as the training progresses in order to minimize the loss

function. Figure 4.4 shows the nature of learning curves with constant and variable learning

rate. From the figure, it can be noticed that when the learning rate is constant, the loss

function skips the minimum value and overshoots, but with a variable learning rate, the loss

function reaches the minimum value.

Figure 4.4: Constant Learning Rate versus Variable Learning Rate

The learning rate of the MultiFlow model is decreased after every certain number of epochs.

The learning rate is decreased in 4 stages to train the MultiFlow model. Table 4.5 illustrates

the learning rate at each stage. From the table, it can be seen that the learning rate is halved

after every stage.

Learning Stage Learning Rate Value
1 1× 10−4

2 5× 10−5

3 2.5× 10−5

4 1.25× 10−5

Table 4.5: Learning Rate Values

4.3.4 Training Challenges and Roadblocks

Training a neural network is a challenging task. Neural networks contain various hyper-

parameters such as learning rate, optimizer, and batch size. These hyperparameters are

4.3 Training Procedures 47

responsible for how well the neural network trains. If these parameters have the optimal

value, then the neural network training performs faster, and the training converges.

While training a neural network, several procedures exist. These are as follows:

• The first procedure to train a neural network can be referred to as a complete training

process. Depending on the task to solve, a neural network model is developed. After

developing the neural network, the model is trained on the whole dataset from scratch

to learn from the dataset and be able to solve the task. While training the network,

the model’s weights are initialized to a random value. As the training progresses,

the weights are updated after each epoch. When the hyperparameters are set to an

optimum value, the model’s loss value starts to decrease, indicating that the model is

starting to learn and improve itself, leading the model weights to reach accurate value.

An example of a model using this type of training process could be to develop a model

that performs image classification to identify whether the given image is of a cat or

dog.

• The second procedure to train the neural network is referred to as transfer learning.

In this procedure, the knowledge gained from solving one task is used to solve another

task, which is similar to the task the model initially solved. Here, rather than training

the whole neural model from scratch, the model is modified, and only the modified

part of the model is trained on the dataset. The reason for doing this is because the

model has already learned the general characteristics of the dataset, and now it should

learn the specific characteristics. To achieve this, the part of the model that is not

modified is frozen (weights of the neural network layers are not updated as training

progresses), and the part of the model modified, in that the weights are updated after

each epoch. An example of a model using this training process could be hierarchical

image classification model in which the model not only classifies whether the given

image is of a cat or dog but also classifies which breed the cat or dog belongs.

For training the MultiFlow model developed in this thesis, both of the above training pro-

cedures were tried. However, some roadblocks were encountered. These are described as

follows:

1. Complete Training: This was the first training procedure used to train the model.

In this training procedure, the model was trained on the whole dataset at once. The

model consists of several million parameters. Also, the images used to train the Mul-

tiFlow model are of high resolution. Due to the image size and model size, the model

required high training time. The model was trained for approximately 2600 epochs.

48 4 Development & Implementation

Every hundred epochs were completed in around 26 hours. Also, during the training

procedure, the GET Lab GPU unexpectedly reinitialized the weights of the MultiFlow

model. Hence, the model started retraining again from scratch. Figure 4.5 shows

the results obtained from this technique. The images below are results obtained after

training for 2600 epochs. The first image indicates the ground truth optical flow, and

the rest of the images depict the predictions made at several epochs.

Figure 4.5: Results of Complete Training Process at Several Epochs

Solution to overcome the above roadblock: Google Colab GPUs is used to train

the MultiFlow model and instead of training the MultiFlow model on the complete

dataset, small subsets of the complete dataset are created for training the model.

2. Transfer learning without freezing layers of the model: This was the second

training procedure used to train the model. In this training procedure, subsets of the

whole dataset were created, and then the model was trained on each subset of the

4.3 Training Procedures 49

dataset one after the other. However, the model did not perform well since the model,

after being trained on the next subset of the dataset, forgets the previously learned

data.

3. Transfer learning with freezing layers of the model: This was the third training

procedure used to train the model. In this training procedure, the model was trained

on the first subset of the data, and then the feature extraction layers of the model were

frozen, not to forget the previously learned data. However, the MultiFlow model was

not able to learn new vector displacements between the pixels of the image frames in

the next subset due to freezing the feature extraction layers. Hence, it always gave

the same result as before. Therefore, this procedure also did not work for training the

MultiFlow model.

The second and third techniques did not solve the task of MultiFlow model learning. The

reasons are as follows:

• Since the architectural computations of the MultiFlow model are different than other

models, for feature extraction a pretrained optical flow model cannot be used.

• When creating subsets of the MPI Sintel dataset, a subset may not contain all possible

types of pixel displacements. Hence selecting a model trained on only one subset of

the dataset may give poor performance.

Since the training processes mentioned above proved to be either not useful or time-consuming,

an alternate method is used to train the MultiFlow model.

Solution to overcome the above roadblocks: Instead of training the MultiFlow model

on subsets of the dataset, train a MultiFlow model for each scene of the dataset using Google

Colab GPU.

50 4 Development & Implementation

F
igure

4.6:
M
u
ltiF

low
A
rch

itectu
re

-
C
ontractive

N
etw

ork

4.3 Training Procedures 51

F
ig
ur
e
4.
7:

M
u
lt
iF
lo
w

A
rc
h
it
ec
tu
re

-
R
efi
n
em

en
t
N
et
w
or
k

52 4 Development & Implementation

F
igure

4.8:
M
u
lti-S

cale
W
eighted

L
oss

F
u
n
ction

Im
p
lem

entation

5 MultiFlow Test Results

5.1 Final Training Procedure

The MPI Sintel dataset contains three categories of the image frames, depending on how

they are rendered in the dataset. Each of the three categories contains 23 specific scenes in

the dataset. To train the MultiFlow model on the whole dataset, the approach is to train a

MultiFlow model for each specific scene. This leads to 23 different MultiFlow models of the

dataset but, at the same time, ensures that the MultiFlow models can capture all possible

vector displacements of the optical flow field. Each scene’s accuracy is calculated using

Average End-Point-Error (AEPE) in the dataset. The overall accuracy of the MultiFlow

model is the average of the AEPE obtained from all 23 scenes. The MultiFlow models in

this thesis are trained on the final render category of the dataset because that category tries

to depict as much realism as possible. This also ensures that if the MultiFlow models works

well on the final render category, it will also work on the other render categories.

For each scene Si, the overall Average End-Point-Error of the MultiFlow model is calculated

as follows:

1

23

23
∑

i=1

EPE(Si) (5.1)

The training parameters are as follows:

• Train-Test Spilt: 90-10 for each 23 scenes.

• Number of Images: 912 train image frames and 106 test image frames from all

scenes.

• Optimizer: Adaptive moment estimation (Adam) with weight decay. The weight

decay value is set to 0.004 with momentum parameters β1=0.9 and β2=0.999. The

56 5 MultiFlow Test Results

parameters for the optimizer are taken from the original FlowNetC model given in

[DFI+15].

• Batch Size: 4

• Learning Rate: Variable learning rate recursively reduced to half after every certain

number of epochs. Initial learning rate=1× 10−4.

• Correlation Layer Parameters: k=0, s1=1, s2=2, d = 20. These values are taken

in reference from [DFI+15].

Since each scene is trained for a different number of epochs, the decrease in the learning rate

after a certain number of epochs is not the same for each scene. The MultiFlow models are

trained and tested on the GPUs available by Google Colab.

Table 5.1 gives the training time required for each training procedure:

Training Procedure Training Time
Complete Training ∼1 Month

Transfer learning without freezing layers of the model ∼2 Weeks
Transfer learning with freezing layers of the model ∼2 Weeks

Final Training Procedure ∼3 Weeks

Table 5.1: Training Time Requirement for Various Training Procedures

Results obtained using the final training procedure show that the MultiFlow model developed

indeed obtains excellent results and therefore ensures its validity and correctness.

5.2 Results

The MultiFlow model’s performance is evaluated on the final render category of the MPI

Sintel dataset. Table 5.2 depicts the Average End-Point-Error (AEPE) obtained by the

different neural network models.

The claim that the scene-specific MultiFlow models outperforms the existing generalized

models is based on the following line of reasoning:

• Consider a CNN model trained on the whole final render category of the MPI Sintel

dataset. If the performance of the CNN model will be evaluated for each scene sepa-

rately similar to the evaluation procedure of the MultiFlow model, then in that case,

the overall AEPE value of the CNN model will still remain the same if the evaluation

5.2 Results 57

was to be performed on whole test data at once. The only difference is that the CNN

model is a generalized model, whereas the MultiFlow is a scene-specific model obtained

in this thesis is due to the reasons mentioned in Chapter 6.

• Looking at the promising results of the scene-specific MultiFlow models, it can be

expected that the generalized MultiFlow model will have the same performance as

scene-specific models.

For the performance evaluation, all the models presented in this chapter use a separate test

set from the MPI Sintel dataset. Due to the scene-specific MultiFlow models, the separate

test set cannot be used for evaluating the MultiFlow models. However, as mentioned in

Section 5.1, 10 % of the train set is used as the test set for the MultiFlow model. Since the

images in the separate test set are similar to the scenes in the train set in terms of motion and

texture characteristics, the performance comparison with other multi-frame CNN models is

possible in this case.

Sintel Final (AEPE)
Models Train Test Runtime (ms) GPU/CPU

PWC-Fusion N/A 4.566 N/A N/A
28 Google Colab

MultiFlow 4.020 4.970 18 Nvidia 1080Ti
ProFlow N/A 5.017 N/A N/A
TIMCflow N/A 5.049 N/A N/A
MR-Flow 3.590 5.380 ∼120000 i7 - CPU

FlowNetC+ft+v 4.830 7.880 1120 GTX Titan GPU
FlowNetC+ft 5.280 8.510 150 GTX Titan GPU

Table 5.2: Average End-Point-Error (in pixels) of Different Models

From the table, it can be inferred that the MultiFlow models outperforms all the existing

models used for optical flow estimation by a margin of 1 to 8 %, albeit the PWC-Fusion

model. The PWC-Fusion model performs slightly better than the MultiFlow models. A

possible reason for the better performance is because the PWC-Fusion model is executed

three times to compute forward and backward flow which are then combined to estimate

the optical flow field. Even though the ProFlow model computes both the forward and the

backward flow, the MultiFlow models outperforms the ProFlow model by only computing

the forward flow. On the other hand, the MR-Flow model executes two neural networks for

optical flow estimation, whereas the MultiFlow models only executes a single neural network

and performs better than the MR-Flow model.

The MultiFlow models have a large performance gain over the best performing FlowNetC+ft+v

58 5 MultiFlow Test Results

model by 36.92 %. FlowNetC+ft+v is trained on the Flying Chairs dataset and fine-tuned

on the clean and final render category of the MPI Sintel dataset. Rather than performing

4X bilinear upsampling, FlowNetC+ft+v uses variational techniques in the post-processing

stage to obtain the optical flow in original dimensions. Similarly, FlowNetC+ft is trained on

the Flying Chairs dataset and fine-tuned on the clean and final render category of the MPI

Sintel dataset but uses 4X bilinear upsampling for obtaining the optical flow in original di-

mensions. The MultiFlow models outperforms the FlowNetC+ft model by a more significant

margin of 41.59 %. The large performance gain over the FlowNetC+ft+v and FlowNetC+ft

models is because the MultiFlow models use image frame triplets to estimate the optical

flow field. However, since the FlowNetC+ft+v and FlowNetC+ft models use the MPI Sintel

dataset for performance evaluation, a comparison is possible in this case.

Table 5.2 also gives the runtime in milliseconds (ms) required for predicting a single optical

flow field per image frame triplets. From the table, it can be observed that the MultiFlow

model predicts and generates the flow fields faster than both the FlowNetC models. Although

the runtime for PWC-Fusion, ProFlow, and TIMCflow model are available for the KITTI

dataset, the runtime values are not given in the table since the dataset is different than the

MPI Sintel dataset. Since the MR-Flow model is executed on the Central Processing Unit

(CPU), a fair comparison of runtime with the MultiFlow models is not possible. For the

MultiFlow model, two separate runtimes are present beacuse the model was executed on the

online Google Colab environment and on the local machine (GET Lab GPU). The runtime

of the Google Colab environment is slightly higher than the local machine due to the latency

associated with data processing and transfer on the online environment.

Figures 5.1, 5.2, and 5.3 illustrates the optical flow fields predicted by the MultiFlow models

from the image frame triplets of each of the 23 scenes of the final render category. The

left column contains the image frame triplets of each scene overlayed on top of each other.

The middle column shows the ground-truth optical flow field. The scene name is written

inside each ground-truth optical flow. The right column shows the optical flow field predicted

by the MultiFlow models. The EPE in the predictions depicts the value obtained for that

particular optical flow field. These figures are present at the end of the chapter.

From the figures, it can be seen that the estimated optical flow fields from the MultiFlow

models are very close to the ground-truth optical flow. The MultiFlow models captures

pixel displacements accurately. The MultiFlow models are also able to preserve structural

information from the image frames by estimating the flow fields accurately along the edges

of the objects.

5.2 Results 59

However, in some scenes such as Ambush 2 and Ambush 6, the EPE is high. Since these

scenes contain less than 20 image frame triplets, the MultiFlow models do not gather enough

knowledge to learn and predict the optical flow fields. Also, an observation made by the

authors of [DFI+15] states that, even though the predictions made by the original FlowNetC

model looks very close to the ground-truth optical flow, the EPE is often large in some cases.

This occurrence of large EPE is due to the favoritism of the end-point-error metric towards

the over-smoothed regions of the ground-truth optical flow. Since the predictions made by

the FlowNetC model are upscaled using bilinear interpolation, the predictions become a bit

noisy, which leads to higher EPE in some cases. A similar kind of behaviour is also observed

for predictions made by the MultiFlow models.

60 5 MultiFlow Test Results

Figure 5.1: Optical Flow Fields Predicted by the MultiFlow Models - 1

5.2 Results 61

Figure 5.2: Optical Flow Fields Predicted by the MultiFlow Models - 2

62 5 MultiFlow Test Results

Figure 5.3: Optical Flow Fields Predicted by the MultiFlow Models - 3

6 Discussion

A neural network model has good generalization performance when it does not overfit on

the test set. Overfitting is the state where test accuracy of the model is less than the train

accuracy. The generalization performance of a neural network indicates how well the model

performs in various scenarios. When the neural network model’s generalization performance

is good, it indicates that the model can achieve good performance on various datasets to

solve the same task. On the other hand, if the generalization performance is poor, then the

neural network needs to be trained better to achieve good performance.

In this thesis, the MultiFlow model is trained on the MPI Sintel dataset. The MultiFlow

models obtained after training is not a single generalized model, but scene-specific models.

The MultiFlow models are trained for each of the 23 different scenes separately and gives

good results on the test data of each scene. Since the MultiFlow model is specifically trained

and tested on one scene of the dataset, the model trained on one scene will not perform

better on other scenes of the MPI Sintel dataset.

A generalized MultiFlow model was not obtained due to the following reasons:

1. High Training time: The original FlowNetC model has 39 Million trainable pa-

rameters. The MultiFlow model is bigger than the FlowNetC model and consists of

45 Million trainable parameters. Also, the MPI Sintel dataset used for training the

MultiFlow model consists of image frames with resolution 436×1024 px. Due to the

larger model size and image resolution, the MultiFlow model requires to be trained

for a high number of epochs, which requires a high training time since the weights of

each parameter needs to be fine-tuned after each epoch. The average time required to

complete one epoch is approximately 14 minutes on Nvidia 1080Ti GPU.

2. Insufficient Hardware Resources: Deep neural networks are generally trained us-

ing clusters of GPUs. Due to the size of the MultiFlow model, multiple GPUs are

needed to train the model. The currently available resources proved insufficient to

train the MultiFlow model since these GPUs were not powerful enough to complete

66 6 Discussion

the training process faster. Also, training deep CNN models like the MultiFlow model

has high GPU memory requirement. Since training such deep neural networks requires

high resources, the training hardware resources available to train the MultiFlow model

proved insufficient.

3. Unexpected GPU behavior: Deep neural networks are executed on GPUs. The

GPU is responsible for all the computations and sends the results back to the neural

network to update the the weights of model. The MultiFlow model is also trained

on GET Lab GPU. As discussed in Section 4.3.4, during the training process of the

whole MPI Sintel dataset, a sudden spike in the loss function value in the magnitude

of thousands for some number of epochs was observed. After looking into the loss

records, it was found that the neural network had started relearning since the GPU

had reinitialized all the weights computations, and the same predictions were repeated.

To check this, the predictions made before and after the loss spike were compared. It

was observed that these predictions matched with each other. Graph 6.1 depicts the

loss function curve visualized in a log10 scale while training the MultiFlow model on

the complete MPI Sintel dataset.

Figure 6.1: Loss Curve Spike during Neural Network Training on Complete MPI Sintel
Dataset

To reconfirm the above mentioned behaviour of the GPU, the model was trained on half

of the dataset on Nvidia 1080Ti GPU, and again same pattern was observed. Graph

6.2 depicts the loss function curve visualized in a log10 scale while training the model

67

on the partial MPI Sintel dataset. From both the graphs, it can be observed that the

loss value spikes and then returns to the normal value in the middle of the training

process. Due to this unexpected GPU behavior, training the MultiFlow model became

time-consuming.

Figure 6.2: Loss Curve Spike during Neural Network Training on Half MPI Sintel Dataset

Due to the reasons mentioned above, there is no generalized MultiFlow model present in

this thesis for evaluating all the image frames from the test set of the MPI Sintel dataset.

Nonetheless, the scene-specific models performed good for all the scenes they were trained

for and gave promising results on the test data.

68 6 Discussion

7 Conclusion & Future Work

7.1 Conclusion

In this thesis, the objective of supervised optical flow estimation using more than two con-

secutive image frames with the help of a CNN model is successfully accomplished. This task

is the extension of the standard optical flow estimation task, which only uses consecutive

image pairs. For this purpose a novel CNN architecture called MultiFlow was developed

which uses image frame triplets. One of the major contributions of this thesis was the de-

velopment of the MultiFlow model which was based on the original FlowNetC architecture.

The MultiFlow model can be referred as the advanced variant of the FlowNetC model.

In this thesis, the MPI Sintel dataset was chosen as the primary dataset for training the

MultiFlow model since it met the requirement of consecutive image frame triplets. The

MultiFlow models were trained and tested on the 23 scenes from the final render category

of the MPI Sintel dataset. Results obtained from the MultiFlow models showed that it

outperformed all the existing multi-frame approaches except the PWC-Fusion model. The

MultiFlow models are able to capture pixel displacements in all possible directions and

estimates the resulting optical flow field robustly. Additionally, the MultiFlow models are

also able to preserve structural information along the edges of the objects thereby producing

more accurate flow fields.

Various training procedures for training the MultiFlow model were implemented. A detailed

study regarding their performance was carried out and a suitable training procedure was

chosen to validate and verify the development of the MultiFlow model. Due to the hardware

constraints, scene-specific MultiFlow models are obtained, trained for each scene separately.

Hence, no generalized MultiFlow model is present in this thesis.

The inference of the MultiFlow model is performed by passing the image frame triplets to

the MultiFlow model. The model is executed only once to estimate the optical flow field

between the consecutive image frame triplets.

70 7 Conclusion & Future Work

To conclude, the MultiFlow model is the second best model for optical flow estimation using

multiple image frames. The model closely matches the top-performing model of PWC-Fusion.

The results are promising and a step ahead in the right direction for optical flow estimation

using consecutive image frame triplets.

7.2 Future Work

• The task of optical flow estimation can be further extended to more than image frame

triplets such as image frame quadruplets, and the performance can be investigated.

• Given the size of the MultiFlow , a generalized MultiFlow model can be obtained with

sufficient computing power. The performance of the generalized MultiFlow model can

be compared with the scene-specific models from this thesis.

• Currently, the MultiFlow model does not work on occlusion handling between the image

frame triplets. Further research can be done in this area to improve the performance

of the MultiFlow model.

Bibliography

[BWSB12] Butler, Daniel J.; Wulff, Jonas; Stanley, Garrett B.; Black,
Michael J.: A naturalistic open source movie for optical flow evaluation.
In: European conference on computer vision Springer, 2012, pp. 611–625

[DFI+15] Dosovitskiy, Alexey; Fischer, Philipp; Ilg, Eddy; Hausser, Philip;
Hazirbas, Caner; Golkov, Vladimir; Van Der Smagt, Patrick; Cre-
mers, Daniel; Brox, Thomas: Flownet: Learning optical flow with convo-
lutional networks. In: Proceedings of the IEEE international conference on
computer vision, 2015, pp. 2758–2766

[DT05] Dalal, Navneet; Triggs, Bill: Histograms of oriented gradients for human
detection. In: IEEE computer society conference on computer vision and
pattern recognition (CVPR) Bd. 1 IEEE, 2005, pp. 886–893

[DTSB15] Dosovitskiy, Alexey; Tobias Springenberg, Jost; Brox, Thomas:
Learning to generate chairs with convolutional neural networks. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1538–1546

[Git19] Gituma, Mark: Generating Optical Flow using NVIDIA flownet2-pytorch
Implementation. https://towardsdatascience.com/generating-
optical-flow-using-nvidia-flownet2-pytorch-implementation-
d7b0ae6f8320. Version: 2019. – Last accessed on 10 June 2020

[GLU12] Geiger, Andreas; Lenz, Philip; Urtasun, Raquel: Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In: IEEE Conference
on Computer Vision and Pattern Recognition IEEE, 2012, pp. 3354–3361

[HS81] Horn, Berthold K.; Schunck, Brian G.: Determining optical flow. In:
Techniques and Applications of Image Understanding Bd. 281 International
Society for Optics and Photonics, 1981, pp. 319–331

[HZRS16] He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian: Deep Residual
Learning for Image Recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, June 27-30,
IEEE Computer Society, 2016, pp. 770–778

https://towardsdatascience.com/generating-optical-flow-using-nvidia-flownet2-pytorch-implementation-d7b0ae6f8320
https://towardsdatascience.com/generating-optical-flow-using-nvidia-flownet2-pytorch-implementation-d7b0ae6f8320
https://towardsdatascience.com/generating-optical-flow-using-nvidia-flownet2-pytorch-implementation-d7b0ae6f8320

72 Bibliography

[IMS+17] Ilg, Eddy; Mayer, Nikolaus; Saikia, Tonmoy; Keuper, Margret; Doso-
vitskiy, Alexey; Brox, Thomas: FlowNet 2.0: Evolution of Optical Flow
Estimation with Deep Networks. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, Honolulu, HI, USA, July 21-26, IEEE
Computer Society, 2017, pp. 1647–1655

[JK19] Johnson, Justin M.; Khoshgoftaar, Taghi M.: Survey on deep learning
with class imbalance. In: J. Big Data 6 (2019), pp. 27

[Lie] Lienen, Joris van: Transposed Convolution. https://www.youtube.com/
watch?v=96_oGE8WyPg&app=desktop. – Last accessed on 5 December 2020

[LK81] Lucas, Bruce D.; Kanade, Takeo: An Iterative Image Registration Tech-
nique with an Application to Stereo Vision. In: Hayes, Patrick J. (Hrsg.):
Proceedings of the 7th International Joint Conference on Artificial Intelli-
gence, IJCAI, Vancouver, BC, Canada, August 24-28, William Kaufmann,
1981, pp. 674–679

[Lov02] Love, Bradley C.: Comparing supervised and unsupervised category learn-
ing. In: Psychonomic bulletin & review 9 (2002), Nr. 4, pp. 829–835

[Low04] Lowe, David G.: Distinctive image features from scale-invariant keypoints.
In: International journal of computer vision 60 (2004), Nr. 2, pp. 91–110

[LSD15] Long, Jonathan; Shelhamer, Evan; Darrell, Trevor: Fully convolu-
tional networks for semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–3440

[MB18] Maurer, Daniel; Bruhn, Andrés: ProFlow: Learning to Predict Optical
Flow. In: British Machine Vision Conference 2018, BMVC 2018, Newcastle,
UK, September 3-6, 2018 (2018), pp. 86

[MG15] Menze, Moritz; Geiger, Andreas: Object scene flow for autonomous vehi-
cles. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3061–3070

[MHR18] Meister, Simon; Hur, Junhwa; Roth, Stefan: UnFlow: Unsupervised
Learning of Optical Flow With a Bidirectional Census Loss. In: McIl-
raith, Sheila A. (Hrsg.); Weinberger, Kilian Q. (Hrsg.): Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, the 30th inno-
vative Applications of Artificial Intelligence, and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence, New Orleans, Louisiana,
USA, February 2-7, AAAI Press, 2018, pp. 7251–7259

[MO18] Mureşan, Horea; Oltean, Mihai: Fruit recognition from images using
deep learning. In: Acta Universitatis Sapientiae, Informatica 10 (2018), Nr.
1, pp. 26–42

https://www.youtube.com/watch?v=96_oGE8WyPg&app=desktop
https://www.youtube.com/watch?v=96_oGE8WyPg&app=desktop

Bibliography 73

[PC15] Pinheiro, Pedro O.; Collobert, Ronan: From image-level to pixel-level
labeling with convolutional networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp. 1713–1721

[Pep17] Pepose, Sam: FlowNet2 (TensorFlow). https://github.com/sampepose/
flownet2-tf, 2017. – Last accessed on 14 April 2020

[Pin17] Pinard, Clement: FlowNetPytorch. https://github.com/
ClementPinard/FlowNetPytorch, 2017. – Last accessed on 13 March
2020

[RFB15] Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas: U-net: Con-
volutional networks for biomedical image segmentation. In: International
Conference on Medical image computing and computer-assisted intervention
Springer, 2015, pp. 234–241

[RGS+19] Ren, Zhile; Gallo, Orazio; Sun, Deqing; Yang, Ming-Hsuan; Sudderth,
Erik; Kautz, Jan: A fusion approach for multi-frame optical flow esti-
mation. In: IEEE Winter Conference on Applications of Computer Vision
(WACV) IEEE, 2019, pp. 2077–2086

[Sah17] Saha, Sumit: A Comprehensive Guide to Convolutional Neural
Networks - the ELI5 way. https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-
way-3bd2b1164a53. Version: 2017. – Last accessed on 16 May 2020

[SLJ+15] Szegedy, Christian; Liu, Wei; Jia, Yangqing; Sermanet, Pierre; Reed,
Scott E.; Anguelov, Dragomir; Erhan, Dumitru; Vanhoucke, Vincent;
Rabinovich, Andrew: Going deeper with convolutions. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR, Boston, MA,
USA, June 7-12, IEEE Computer Society, 2015, pp. 1–9

[SSJB16] Sevilla-Lara, Laura; Sun, Deqing; Jampani, Varun; Black, Michael J.:
Optical Flow with Semantic Segmentation and Localized Layers. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas,
NV, USA, June 27-30, IEEE Computer Society, 2016, pp. 3889–3898

[SYLK18] Sun, Deqing; Yang, Xiaodong; Liu, Ming-Yu; Kautz, Jan: Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8934–8943

[SZ15] Simonyan, Karen; Zisserman, Andrew: Very deep convolutional net-
works for large-scale image recognition. In: 3rd International Conference on
Learning Representations, ICLR, San Diego, CA, USA, May 7-9, Confer-
ence Track Proceedings (2015)

https://github.com/sampepose/flownet2-tf
https://github.com/sampepose/flownet2-tf
https://github.com/ClementPinard/FlowNetPytorch
https://github.com/ClementPinard/FlowNetPytorch
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

74 Bibliography

[WRHS13] Weinzaepfel, Philippe; Revaud, Jerome; Harchaoui, Zaid; Schmid,
Cordelia: DeepFlow: Large displacement optical flow with deep matching.
In: Proceedings of the IEEE international conference on computer vision,
2013, pp. 1385–1392

[WSLB17] Wulff, Jonas; Sevilla-Lara, Laura; Black, Michael J.: Optical flow in
mostly rigid scenes. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4671–4680

[YCVDWM20] Yang, Fei; Cheng, Yongmei; Van De Weijer, Joost; Mozerov,
Mikhail G.: Improved Discrete Optical Flow Estimation With Triple Image
Matching Cost. In: IEEE Access 8 (2020), pp. 17093–17102

Appendix

List of Notations

• (x) : Floor functions. Returns greatest values ≤ x

• (x,y) : Pixel at locations x, y

• |x| : Absolute Value function. Returns absolute value of x

• ∈ X : Is an element of X

• 〈〉 : Interval Parameter

• R : Set of Real Numbers

List of Abbreviations

• SLAM: Simultaneous Localization and Mapping

• HOG: Histogram of Gradients

• SIFT: Scale-Invariant Feature Transform

• CNN: Convolution Neural Networks

• PWC: Pyramid, Warping, Cost Volume

• LSTM: Long Short Term Memory

• KITTI: Karlsruhe Institute of Technology and Toyota Technological Institute

• 3D: Three Dimensions

• 2D: Two Dimensions

• GANS: Genetive Adversarial Networks

76 Appendix

• NLP: Natural Language Processing

• RGB: Red, Green, Blue

• AEPE: Average End-Point-Error

• EPE: End-Point-Error

• CR1: Correlation Volume 1

• CR2: Correlation Volume 2

• CR3: Correlation Volume 3

• ReLU: Rectified Linear Units

• API: Application Program Interface

• IDE: Integrated Development Environment

• GPU: Graphics Processing Unit

• Adam: Adaptive Moment Estimation

• ms: Milliseconds

• CPU: Central Processing Unit

List of Architectures

• DeepFlow: Model for Optical Flow Estimation from [WRHS13]

• FlowNetS: Neural Network for Optical Flow Estimation from [DFI+15]

• FlowNetC: Neural Network for Optical Flow Estimation from [DFI+15]

• FlowNet2: Neural Network for Optical Flow Estimation from [IMS+17]

• PWC-Net: Neural Network for Optical Flow Estimation from [SYLK18]

• ProFlow: Neural Network for Optical Flow Estimation from [MB18]

• PWC-Fusion: Neural Network for Optical Flow Estimation from [RGS+19]

• TIMCflow: Neural Network for Optical Flow Estimation from [YCVDWM20]

77

• MR-Flow: Neural Network for Optical Flow Estimation from [WSLB17]

• UnFlow: Neural Network for Optical Flow Estimation from [MHR18]

• U-Net: Neural Network for Biomedical Image Segmentation from [RFB15]

• GoogleNet: Neural Network for Image Classification from [SLJ+15]

• ResNet: Neural Network for Image Classification from [HZRS16]

• VGGNet: Neural Network for Image Classification from [SZ15]

List of Tables

2.1 Size of Various Optical Flow Datasets . 18

2.2 MPI Sintel Dataset Details . 18

4.1 Layer Details of Contractive Network of MultiFlow 40

4.2 Layer Details of Refinement Network of MultiFlow 42

4.3 Inputs to the Concatenation Layer of Refinement Network of the MultiFlow

Model . 43

4.4 Weights for Predicted Flows . 44

4.5 Learning Rate Values . 46

5.1 Training Time Requirement for Various Training Procedures 56

5.2 Average End-Point-Error (in pixels) of Different Models 57

80 List of Tables

List of Figures

1.1 Semantic Segmentation of Image Frame using Optical Flow from [SSJB16] . 2

1.2 Example of Optical Flow [DFI+15]. Refer Section 2.2 for Color Coding Scheme 4

2.1 Optical Flow Estimation . 7

2.2 Color Wheel for Optical Flow Visualization [Git19] 8

2.3 Diagrammatic Representation of EPE. Based on the figure given by the author

in [Git19]. 9

2.4 Typical CNN Architecture [MO18] . 12

2.5 Example of Convolution Operation [Sah17] 13

2.6 Example of Transposed Convolution Operation [Lie] 15

2.7 Autoencoder Architecture . 16

2.8 Albedo Frame F1 [BWSB12] . 20

2.9 Albedo Frame F2 [BWSB12] . 20

2.10 Optical Flow [BWSB12] . 20

2.11 Clean Frame F1 [BWSB12] . 20

2.12 Clean Frame F2 [BWSB12] . 20

2.13 Optical Flow [BWSB12] . 20

2.14 Final Frame F1 [BWSB12] . 20

2.15 Final Frame F2 [BWSB12] . 20

2.16 Optical Flow [BWSB12] . 20

3.1 Timeline of CNN based Optical Flow Estimation Models 26

4.1 Correlation Operation between Two Features Maps 31

4.2 Standard FlowNetC Architecture [DFI+15] 32

4.3 Refinement Network of FlowNetC [DFI+15] 34

4.4 Constant Learning Rate versus Variable Learning Rate 46

4.5 Results of Complete Training Process at Several Epochs 48

4.6 MultiFlow Architecture - Contractive Network 50

4.7 MultiFlow Architecture - Refinement Network 51

82 List of Figures

4.8 Multi-Scale Weighted Loss Function Implementation 52

5.1 Optical Flow Fields Predicted by the MultiFlow Models - 1 60

5.2 Optical Flow Fields Predicted by the MultiFlow Models - 2 61

5.3 Optical Flow Fields Predicted by the MultiFlow Models - 3 62

6.1 Loss Curve Spike during Neural Network Training on Complete MPI Sintel

Dataset . 66

6.2 Loss Curve Spike during Neural Network Training on Half MPI Sintel Dataset 67

Declaration

I hereby confirm that I have prepared the submitted master thesis independently and have

not used any sources or aids other than those indicated. Quotations were marked as such.

Paderborn, December 19, 2020

Anshul Suresh Bansal

	Introduction
	Motivation
	Overview of Optical Flow
	Objectives of this Thesis
	Structure of this Thesis

	Fundamentals
	Optical Flow
	Optical Flow Visualization
	Average End-Point-Error (AEPE)
	Convolutional Neural Networks
	Convolution Layers
	Transposed Convolution Layers
	Autoencoder - An Encoder Decoder Architecture
	Dataset
	MPI Sintel Dataset

	Related Work
	Image Frame Pairs Approaches
	Multiple Image Frames Approaches
	Why MultiFlow?

	Development & Implementation
	Original FlowNetC Architecture
	Contractive Network of FlowNetC
	Correlation Layer
	Refinement Network of FlowNetC

	Implementation of MultiFlow
	Contractive Network of MultiFlow
	Refinement Network of MultiFlow

	Training Procedures
	Hardware and Software Resources
	Multi-Scale Loss Function
	Hyperparameter Optimization - Variable Learning Rate
	Training Challenges and Roadblocks

	MultiFlow Test Results
	Final Training Procedure
	Results

	Discussion
	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Declaration

